Seasonally Resolved Distributional Trends of North American Temperatures Show Contraction of Winter Variability

Andrew Rhines Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Andrew Rhines in
Current site
Google Scholar
PubMed
Close
,
Karen A. McKinnon National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Karen A. McKinnon in
Current site
Google Scholar
PubMed
Close
,
Martin P. Tingley Departments of Statistics and Meteorology, The Pennsylvania State University, State College, Pennsylvania

Search for other papers by Martin P. Tingley in
Current site
Google Scholar
PubMed
Close
, and
Peter Huybers Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Peter Huybers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There is considerable interest in determining whether recent changes in the temperature distribution extend beyond simple shifts in the mean. The authors present a framework based on quantile regression, wherein trends are estimated across percentiles. Pointwise trends from surface station observations are mapped into continuous spatial fields using thin-plate spline regression. This procedure allows for resolving spatial dependence of distributional trends, providing uncertainty estimates that account for spatial covariance and varying station density. The method is applied to seasonal near-surface temperatures between 1979 and 2014 to unambiguously assess distributional changes in the densely sampled North American region. Strong seasonal differences are found, with summer trends exhibiting significant warming throughout the domain with little distributional dependence, while the spatial distribution of spring and fall trends show a dipole structure. In contrast, the spread between the 95th and 5th percentile in winter has decreased, with trends of −0.71° and −0.85°C decade−1, respectively, for daily maximum and minimum temperature, a contraction that is statistically significant over 84% of the domain. This decrease in variability is dominated by warming of the coldest days, which has outpaced the median trend by approximately a factor of 4. Identical analyses using ERA-Interim and NCEP-2 yield consistent estimates for winter (though not for other seasons), suggesting that reanalyses can be reliably used for relating winter trends to circulation anomalies. These results are consistent with Arctic-amplified warming being strongest in winter and with the influence of synoptic-scale advection on winter temperatures. Maps for all percentiles, seasons, and datasets are provided via an online tool.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0363.s1.

Corresponding author e-mail: Andrew Rhines, arhines@atmos.uw.edu

Abstract

There is considerable interest in determining whether recent changes in the temperature distribution extend beyond simple shifts in the mean. The authors present a framework based on quantile regression, wherein trends are estimated across percentiles. Pointwise trends from surface station observations are mapped into continuous spatial fields using thin-plate spline regression. This procedure allows for resolving spatial dependence of distributional trends, providing uncertainty estimates that account for spatial covariance and varying station density. The method is applied to seasonal near-surface temperatures between 1979 and 2014 to unambiguously assess distributional changes in the densely sampled North American region. Strong seasonal differences are found, with summer trends exhibiting significant warming throughout the domain with little distributional dependence, while the spatial distribution of spring and fall trends show a dipole structure. In contrast, the spread between the 95th and 5th percentile in winter has decreased, with trends of −0.71° and −0.85°C decade−1, respectively, for daily maximum and minimum temperature, a contraction that is statistically significant over 84% of the domain. This decrease in variability is dominated by warming of the coldest days, which has outpaced the median trend by approximately a factor of 4. Identical analyses using ERA-Interim and NCEP-2 yield consistent estimates for winter (though not for other seasons), suggesting that reanalyses can be reliably used for relating winter trends to circulation anomalies. These results are consistent with Arctic-amplified warming being strongest in winter and with the influence of synoptic-scale advection on winter temperatures. Maps for all percentiles, seasons, and datasets are provided via an online tool.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0363.s1.

Corresponding author e-mail: Andrew Rhines, arhines@atmos.uw.edu

Supplementary Materials

    • Supplemental Materials (PDF 113.75 KB)
Save
  • Alapaty, K., N. L. Seaman, D. S. Niyogi, and A. F. Hanna, 2001: Assimilating surface data to improve the accuracy of atmospheric boundary layer simulations. J. Appl. Meteor., 40, 20682082, doi:10.1175/1520-0450(2001)040<2068:ASDTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, L., and S. Perkins, 2013: Debate heating up over changes in climate variability. Environ. Res. Lett., 8, 041001, doi:10.1088/1748-9326/8/4/041001.

    • Search Google Scholar
    • Export Citation
  • Alexander, L., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Barbosa, S., M. Scotto, and A. Alonso, 2011: Summarising changes in air temperature over central Europe by quantile regression and clustering. Nat. Hazards Earth Syst. Sci., 11, 32273233, doi:10.5194/nhess-11-3227-2011.

    • Search Google Scholar
    • Export Citation
  • Bassett, G. W., Jr., M.-Y. S. Tam, and K. Knight, 2002: Quantile models and estimators for data analysis. Metrika, 55, 1726, doi:10.1007/s001840200183.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, doi:10.1175/JCLI-D-11-00685.1.

    • Search Google Scholar
    • Export Citation
  • Brown, S., J. Caesar, and C. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, doi:10.1029/2006JD008091.

    • Search Google Scholar
    • Export Citation
  • Cade, B. S., and B. R. Noon, 2003: A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ., 1, 412420, doi:10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Cavanaugh, N. R., and S. S. Shen, 2014: Northern Hemisphere climatology and trends of statistical moments documented from GHCN-Daily surface air temperature station data from 1950 to 2010. J. Climate, 27, 53965410, doi:10.1175/JCLI-D-13-00470.1.

    • Search Google Scholar
    • Export Citation
  • Cavanaugh, N. R., and S. S. Shen, 2015: The effects of gridding algorithms on the statistical moments and their trends of daily surface air temperature. J. Climate, 28, 91889205, doi:10.1175/JCLI-D-14-00668.1.

    • Search Google Scholar
    • Export Citation
  • Chernozhukov, V., 2005: Extremal quantile regression. Ann. Stat., 33, 806839, doi:10.1214/009053604000001165.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cornes, R. C., and P. D. Jones, 2013: How well does the ERA-Interim reanalysis replicate trends in extremes of surface temperature across Europe? J. Geophys. Res. Atmos., 118, 10 26210 276, doi:10.1002/jgrd.50799.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Director, H., and L. Bornn, 2015: Connecting point-level and gridded moments in the analysis of climate data. J. Climate, 28, 34963510, doi:10.1175/JCLI-D-14-00571.1.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., J. Sillmann, S. Wild, L. V. Alexander, T. Lippmann, and F. W. Zwiers, 2014: Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. J. Climate, 27, 50195035, doi:10.1175/JCLI-D-13-00405.1.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2007: Cy31r1—Operational implementation 12 September 2006. Part IV: Physical processes. IFS Documentation, 155 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2007/9221-part-iv-physical-processes.pdf.]

  • Furrer, R., M. Genton, and D. Nychka, 2006: Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Stat., 15, 502523, doi:10.1198/106186006X132178.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., D. Nychka, and S. Sain, 2013: Fields: Tools for spatial data, version 6.8. R package. [Available online at http://www.image.ucar.edu/Software/Fields.]

  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275, doi:10.1175/MWR3022.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Hanson, C., and Coauthors, 2007: Modelling the impact of climate extremes: An overview of the MICE project. Climatic Change, 81, 163177, doi:10.1007/s10584-006-9230-3.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2016: Connecting climate model projections of global temperature change with the real world. Bull. Amer. Meteor. Soc., 97, 963980, doi:10.1175/BAMS-D-14-00154.1.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., N. Hofstra, A. Klein Tank, E. Klok, P. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Hofstra, N., M. New, and C. McSweeney, 2010: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dyn., 35, 841858, doi:10.1007/s00382-009-0698-1.

    • Search Google Scholar
    • Export Citation
  • Holmes, C. R., T. Woollings, E. Hawkins, and H. de Vries, 2016: Robust future changes in temperature variability under greenhouse gas forcing and the relationship with thermal advection. J. Climate, 29, 22212236, doi:10.1175/JCLI-D-14-00735.1.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., P. D. Jones, V. N. Livina, T. M. Lenton, and P. M. Cox, 2013: No increase in global temperature variability despite changing regional patterns. Nature, 500, 327330, doi:10.1038/nature12310.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., K. McKinnon, A. Rhines, and M. Tingley, 2014: U.S. daily temperatures: The meaning of extremes in the context of nonnormality. J. Climate, 27, 73687384, doi:10.1175/JCLI-D-14-00216.1.

    • Search Google Scholar
    • Export Citation
  • Ihaka, R., and R. Gentleman, 1996: R: A language for data analysis and graphics. J. Comput. Graph. Stat., 5, 299314.

  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, doi:10.1038/nature01675.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: variability is more important than averages. Climatic Change, 21, 289302, doi:10.1007/BF00139728.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J., N. Rayner, R. Smith, D. Parker, and M. Saunby, 2011: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Knight, K., 1998: Limiting distributions for L1 regression estimators under general conditions. Ann. Stat., 26, 755770, doi:10.1214/aos/1028144858.

    • Search Google Scholar
    • Export Citation
  • Koenker, R., 2014: Quantile regression. [Available online at http://www.econ.uiuc.edu/~roger/research/rq/rq.html.]

  • Koenker, R., and G. Bassett Jr., 1978: Regression quantiles. Econometrica, 46, 3350, doi:10.2307/1913643.

  • Koenker, R., and K. Hallock, 2001: Quantile regression. J. Econ. Perspect., 15, 143156, doi:10.1257/jep.15.4.143.

  • Lee, K., H.-J. Baek, and C. Cho, 2013: Analysis of changes in extreme temperatures using quantile regression. Asia-Pac. J. Atmos. Sci., 49, 313323, doi:10.1007/s13143-013-0030-1.

    • Search Google Scholar
    • Export Citation
  • Li, T.-H., 2012: Quantile periodograms. J. Amer. Stat. Assoc., 107, 765776, doi:10.1080/01621459.2012.682815.

  • Luber, G., and M. McGeehin, 2008: Climate change and extreme heat events. Amer. J. Prev. Med., 35, 429435, doi:10.1016/j.amepre.2008.08.021.

    • Search Google Scholar
    • Export Citation
  • Machado, J. A. F., and J. S. Silva, 2005: Quantiles for counts. J. Amer. Stat. Assoc., 100, 12261237, doi:10.1198/016214505000000330.

    • Search Google Scholar
    • Export Citation
  • Mannshardt, E., P. Craigmile, and M. Tingley, 2013: Statistical modeling of extreme value behavior in North American tree-ring density series. Climatic Change, 117, 843858, doi:10.1007/s10584-012-0575-5.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, doi:10.1023/A:1015820616384.

  • Matiu, M., D. P. Ankerst, and A. Menzel, 2016: Asymmetric trends in seasonal temperature variability in instrumental records from ten stations in Switzerland, Germany and the UK from 1864 to 2012. Int. J. Climatol., 36, 1327, doi:10.1002/joc.4326.

    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., A. Rhines, M. P. Tingley, and P. Huybers, 2016: The changing shape of Northern Hemisphere summer temperature distributions. J. Geophys. Res. Atmos., 121, 88498868, doi:10.1002/2016JD025292.

    • Search Google Scholar
    • Export Citation
  • McNider, R., and Coauthors, 2012: Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. J. Geophys. Res., 117, D14106, doi:10.1029/2012JD017578.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, doi:10.1029/2009GL040736.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, doi:10.1175/2008JCLI2263.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Misra, V., J.-P. Michael, R. Boyles, E. Chassignet, M. Griffin, and J. O’Brien, 2012: Reconciling the spatial distribution of the surface temperature trends in the southeastern United States. J. Climate, 25, 36103618, doi:10.1175/JCLI-D-11-00170.1.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., B. Medeiros, and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, doi:10.1007/s00382-013-1964-9.

    • Search Google Scholar
    • Export Citation
  • Proistosescu, C., A. Rhines, and P. Huybers, 2016: Identification and interpretation of nonnormality in atmospheric time series. Geophys. Res. Lett., 43, 54255434, doi:10.1002/2016GL068880.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 90517 909, doi:10.1073/pnas.1101766108.

    • Search Google Scholar
    • Export Citation
  • Reich, B. J., and L. B. Smith, 2013: Bayesian quantile regression for censored data. Biometrics, 69, 651660, doi:10.1111/biom.12053.

  • Rhines, A., and P. Huybers, 2013: Frequent summer temperature extremes reflect changes in the mean, not the variance. Proc. Natl. Acad. Sci. USA, 110, E546, doi:10.1073/pnas.1218748110.

    • Search Google Scholar
    • Export Citation
  • Rhines, A., M. P. Tingley, K. A. McKinnon, and P. Huybers, 2015: Decoding the precision of historical temperature observations. Quart. J. Roy. Meteor. Soc., 141, 29232933, doi:10.1002/qj.2612.

    • Search Google Scholar
    • Export Citation
  • Robeson, S. M., C. J. Willmott, and P. D. Jones, 2014: Trends in hemispheric warm and cold anomalies. Geophys. Res. Lett., 41, 90659071, doi:10.1002/2014GL062323.

    • Search Google Scholar
    • Export Citation
  • Ruff, T. W., and J. D. Neelin, 2012: Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett., 39, L04704, doi:10.1029/2011GL050610.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and P. Sura, 2009: Reconciling non-Gaussian climate statistics with linear dynamics. J. Climate, 22, 11931207, doi:10.1175/2008JCLI2358.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Potka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, doi:10.1175/JCLI-D-14-00632.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, doi:10.1038/nclimate2268.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115, doi:10.1029/2004JD005306.

    • Search Google Scholar
    • Export Citation
  • Simolo, C., M. Brunetti, M. Maugeri, and T. Nanni, 2011: Evolution of extreme temperatures in a warming climate. Geophys. Res. Lett., 38, L16701, doi:10.1029/2011GL048437.

    • Search Google Scholar
    • Export Citation
  • Simolo, C., M. Brunetti, M. Maugeri, and T. Nanni, 2012: Extreme summer temperatures in Western Europe. Adv. Sci. Res., 8, 59, doi:10.5194/asr-8-5-2012.

    • Search Google Scholar
    • Export Citation
  • Simpson, D. G., R. J. Carroll, and D. Ruppert, 1987: M-estimation for discrete data: Asymptotic distribution theory and implications. Ann. Stat., 15, 657669, doi:10.1214/aos/1176350367.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277, doi:10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., and R. T. Pierrehumbert, 1997: Lower-tropospheric heat transport in the Pacific storm track. J. Atmos. Sci., 54, 15331543, doi:10.1175/1520-0469(1997)054<1533:LTHTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tingley, M., 2012: A Bayesian ANOVA scheme for calculating climate anomalies, with applications to the instrumental temperature record. J. Climate, 25, 777791, doi:10.1175/JCLI-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, K., 2014: Sampling biases in datasets of historical mean air temperature over land. Nat. Sci. Rep., 4, 4637, doi:10.1038/srep04637.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2513 1233 376
PDF Downloads 590 107 10