Large-Scale Controls on Extreme Precipitation

Jessica M. Loriaux Delft University of Technology, Delft, and Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Jessica M. Loriaux in
Current site
Google Scholar
PubMed
Close
,
Geert Lenderink Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Geert Lenderink in
Current site
Google Scholar
PubMed
Close
, and
A. Pier Siebesma Delft University of Technology, Delft, and Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by A. Pier Siebesma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-eddy simulations with strong lateral forcing representative of precipitation over the Netherlands are performed to investigate the influence of stability, relative humidity (RH), and moisture convergence on precipitation. Furthermore, a simple climate perturbation is applied to analyze the precipitation response to increasing temperatures. Precipitation is decomposed to distinguish between processes affecting the precipitating area and the precipitation intensity. It is shown that amplification of the moisture convergence and destabilization of the atmosphere both lead to an increase in precipitation, but on account of different effects: atmospheric stability mainly influences the precipitation intensity, whereas the moisture convergence mainly controls the precipitation area fraction. Extreme precipitation intensities show qualitatively similar sensitivities to atmospheric stability and moisture convergence. Precipitation increases with RH due to an increase in area fraction, despite a decrease in intensity. The precipitation response to the climate perturbation shows a stronger response for the precipitation intensity than the overall precipitation, with no clear dependency on changes in atmospheric stability, moisture convergence, and relative humidity.

Corresponding author e-mail: Jessica M. Loriaux, jmloriaux@gmail.com

Abstract

Large-eddy simulations with strong lateral forcing representative of precipitation over the Netherlands are performed to investigate the influence of stability, relative humidity (RH), and moisture convergence on precipitation. Furthermore, a simple climate perturbation is applied to analyze the precipitation response to increasing temperatures. Precipitation is decomposed to distinguish between processes affecting the precipitating area and the precipitation intensity. It is shown that amplification of the moisture convergence and destabilization of the atmosphere both lead to an increase in precipitation, but on account of different effects: atmospheric stability mainly influences the precipitation intensity, whereas the moisture convergence mainly controls the precipitation area fraction. Extreme precipitation intensities show qualitatively similar sensitivities to atmospheric stability and moisture convergence. Precipitation increases with RH due to an increase in area fraction, despite a decrease in intensity. The precipitation response to the climate perturbation shows a stronger response for the precipitation intensity than the overall precipitation, with no clear dependency on changes in atmospheric stability, moisture convergence, and relative humidity.

Corresponding author e-mail: Jessica M. Loriaux, jmloriaux@gmail.com
Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224–232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Attema, J. J., J. M. Loriaux, and G. Lenderink, 2014: Extreme precipitation response to climate perturbations in an atmospheric mesoscale model. Environ. Res. Lett., 9, 014003, doi:10.1088/1748-9326/9/1/014003.

    • Search Google Scholar
    • Export Citation
  • Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181–185, doi:10.1038/ngeo1731.

    • Search Google Scholar
    • Export Citation
  • Blenkinsop, S., S. C. Chan, E. J. Kendon, N. M. Roberts, and H. J. Fowler, 2015: Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett., 10, 054021, doi:10.1088/1748-9326/10/5/054021.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012a: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 2682–2698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., A. P. Siebesma, J. D. Korpershoek, and H. J. J. Jonker, 2012b: Detrainment in deep convection. Geophys. Res. Lett., 39, L20816, doi:10.1029/2012GL053735.

    • Search Google Scholar
    • Export Citation
  • Dal Gesso, S., A. P. Siebesma, S. R. de Roode, and J. M. van Wessem, 2014: A mixed-layer model perspective on stratocumulus steady states in a perturbed climate. Quart. J. Roy. Meteor. Soc., 140, 2119–2131, doi:10.1002/qj.2282.

    • Search Google Scholar
    • Export Citation
  • Davies, L., C. Jakob, P. May, V. V. Kumar, and S. Xie, 2013: Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res., 118, 11 534–11 545, doi:10.1002/jgrd.50645.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Hardwick-Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, doi:10.1029/2010GL045081.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and Coauthors, 2010: Formulation of and numerical studies with the Dutch Atmospheric Large-Eddy Simulation (DALES). Geosci. Model Dev., 3, 415–444, doi:10.5194/gmdd-3-99-2010.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • KNMI, 2014: Uurgegevens van het weer in Nederland. Accessed 13 November 2014. [Available online at https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens.]

  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511–514, doi:10.1038/ngeo262.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, doi:10.1088/1748-9326/5/2/025208.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and J. Attema, 2015: A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environ. Res. Lett., 10, 085001, doi:10.1088/1748-9326/10/8/085001.

    • Search Google Scholar
    • Export Citation
  • Loriaux, J. M., G. Lenderink, S. R. de Roode, and A. P. Siebesma, 2013: Understanding convective extreme precipitation scaling using observations and an entraining plume model. J. Atmos. Sci., 70, 3641–3655, doi:10.1175/JAS-D-12-0317.1.

    • Search Google Scholar
    • Export Citation
  • Loriaux, J. M., G. Lenderink, and A. P. Siebesma, 2016a: Composite case of conditions leading to high peak precipitation intensities in the Netherlands [data files]. [Available online at doi:10.4121/uuid:e066b7f5-f83b-406b-93e8-6ba3eb3659eb.]

  • Loriaux, J. M., G. Lenderink, and A. P. Siebesma, 2016b: Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. J. Geophys. Res. Atmos., 121, 5471–5487, doi:10.1002/2015JD024274.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378–381, doi:10.1038/nature09763.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., J. M. Wallace, and D. P. Lettenmaier, 2012: Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys. Res. Lett., 39, L16403, doi:10.1029/2012GL052790.

    • Search Google Scholar
    • Export Citation
  • Muller, C., 2013: Impact of convective organization on the response of tropical precipitation extremes to warming. J. Climate, 26, 5028–5043, doi:10.1175/JCLI-D-12-00655.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C., L. E. Back, and P. A. O’Gorman, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 2784–2800, doi:10.1175/2011JCLI3876.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697–700, doi:10.1038/ngeo1568.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 49–59, doi:10.1007/s40641-015-0009-3.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009a: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 773–14 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009b: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 5676–5685, doi:10.1175/2009JCLI2701.1.

    • Search Google Scholar
    • Export Citation
  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382–385, doi:10.1038/nature09762.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123–138, doi:10.1175/2010JAS3542.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. L. Vidale, and P. A. O’Gorman, 2010: Relative humidity changes in a warmer climate. J. Geophys. Res., 115, D09104, doi:10.1029/2009JD012585.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2014: Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett., 41, 6037–6044, doi:10.1002/2014GL061222.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2015: Increases in moist-convective updraught velocities with warming in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 141, 2828–2838, doi:10.1002/qj.2567.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., R. J. Hogan, P. A. Clark, C. E. Halliwell, K. E. Hanley, H. W. Lean, J. C. Nicol, and R. S. Plant, 2015: The DYMECS Project: A statistical approach for the evaluation of convective storms in high-resolution NWP models. Bull. Amer. Meteor. Soc., 96, 939–951, doi:10.1175/BAMS-D-13-00279.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. Rasmussen, and D. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • van Meijgaard, E., L. H. Van Ulft, W. J. Van de Berg, F. C. Bosveld, B. J. J. M. Van den Hurk, G. Lenderink, and A. P. Siebesma, 2008: The KNMI regional atmospheric climate model RACMO version 2.1. KNMI Tech. Rep. 302, 43 pp. [Available online at bibliotheek.knmi.nl/knmipubTR/TR302.pdf.]

  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522–555, doi:10.1002/2014RG000464.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1791 895 277
PDF Downloads 969 214 32