Impacts of Sea Ice Thickness Initialization on Seasonal Arctic Sea Ice Predictions

Arlan Dirkson School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Arlan Dirkson in
Current site
Google Scholar
PubMed
Close
,
William J. Merryfield Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by William J. Merryfield in
Current site
Google Scholar
PubMed
Close
, and
Adam Monahan School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Adam Monahan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A promising means for increasing skill of seasonal predictions of Arctic sea ice is improving sea ice thickness (SIT) initial conditions; however, sparse SIT observations limit this potential. Using the Canadian Climate Model, version 3 (CanCM3), three statistical models designed to estimate SIT fields for initialization in a real-time forecasting system are applied to initialize sea ice hindcasts over 1981–2012. Hindcast skill is assessed relative to two benchmark SIT initialization methods (SIT-IMs): a climatological initialization currently used operationally and SIT values from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Based on several measures of skill, sea ice predictions are generally improved relative to a climatological initialization. The accuracy with which the initialization fields represent both the thinning of the ice pack over time and interannual variability impacts predictive skill for pan-Arctic sea ice area (SIA) and regional sea ice concentration (SIC), with the most robust improvements obtained with SIT-IMs that best represent both processes. Similar skill to that achieved by initializing with PIOMAS, including skillful predictions of detrended September SIA from May, is obtained by initializing with two of the statistical models. Regional skill for September SIC is also enhanced using improved SIT-IMs, with an increase in the spatial coverage of statistically significant skill from 10% to 60%–70% of the appreciably varying ice pack. Reduced skill is seen, however, in the Nordic seas using the improved SIT-IMs, resulting from an inherent cold sea surface temperature bias in CanCM3 that is amplified by a thicker initial ice cover.

Corresponding author e-mail: Arlan Dirkson, adirkson@uvic.ca

Abstract

A promising means for increasing skill of seasonal predictions of Arctic sea ice is improving sea ice thickness (SIT) initial conditions; however, sparse SIT observations limit this potential. Using the Canadian Climate Model, version 3 (CanCM3), three statistical models designed to estimate SIT fields for initialization in a real-time forecasting system are applied to initialize sea ice hindcasts over 1981–2012. Hindcast skill is assessed relative to two benchmark SIT initialization methods (SIT-IMs): a climatological initialization currently used operationally and SIT values from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Based on several measures of skill, sea ice predictions are generally improved relative to a climatological initialization. The accuracy with which the initialization fields represent both the thinning of the ice pack over time and interannual variability impacts predictive skill for pan-Arctic sea ice area (SIA) and regional sea ice concentration (SIC), with the most robust improvements obtained with SIT-IMs that best represent both processes. Similar skill to that achieved by initializing with PIOMAS, including skillful predictions of detrended September SIA from May, is obtained by initializing with two of the statistical models. Regional skill for September SIC is also enhanced using improved SIT-IMs, with an increase in the spatial coverage of statistically significant skill from 10% to 60%–70% of the appreciably varying ice pack. Reduced skill is seen, however, in the Nordic seas using the improved SIT-IMs, resulting from an inherent cold sea surface temperature bias in CanCM3 that is amplified by a thicker initial ice cover.

Corresponding author e-mail: Arlan Dirkson, adirkson@uvic.ca
Save
  • Anderson, D. L., 1961: Growth rate of sea ice. J. Glaciol., 3, 11701172.

  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, doi:10.1175/JCLI3428.1.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250, doi:10.1175/2010JCLI3775.1.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, doi:10.1175/JCLI-D-11-00209.1.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., D. Salas-Mélia, A. Voldoire, M. Déqué, and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, doi:10.1175/JCLI-D-12-00612.1.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and Coauthors, 2016: Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Climate Dyn., doi:10.1007/s00382-016-2985-y, in press.

    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, A. Kumar, and J. Zhang, 2015: Improving Arctic sea ice prediction using PIOMAS initial sea ice thickness in a coupled ocean–atmosphere model. Mon. Wea. Rev., 143, 46184630, doi:10.1175/MWR-D-15-0097.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 1986: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., 91, 975994, doi:10.1029/JC091iC01p00975.

    • Search Google Scholar
    • Export Citation
  • Day, J. J., E. Hawkins, and S. Tietsche, 2014: Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys. Res. Lett., 41, 75667575, doi:10.1002/2014GL061694.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dirkson, A., W. J. Merryfield, and A. Monahan, 2015: Real-time estimation of Arctic sea ice thickness through maximum covariance analysis. Geophys. Res. Lett., 42, 48694877, doi:10.1002/2015GL063930.

    • Search Google Scholar
    • Export Citation
  • Ellis, B., and L. Brigham, 2009: Arctic marine shipping assessment 2009 report. Arctic Council Rep., 189 pp. [Available online at https://oaarchive.arctic-council.org/handle/11374/54.]

  • Flato, G. M., and W. D. Hibler, 1992: Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22, 626651, doi:10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Germe, A., M. Chevallier, D. Salas-Mélia, E. Sanchez-Gomez, and C. Cassou, 2014: Interannual predictability of Arctic sea ice in a global climate model: Regional contrasts and temporal evolution. Climate Dyn., 43, 25192538, doi:10.1007/s00382-014-2071-2.

    • Search Google Scholar
    • Export Citation
  • Gloersen, P., 1984: Data report on variations in the composition of sea ice during MIZEX/East ’83 with the Nimbus-7 SMMR. NASA Tech. Memo. NASA-TM-86170, 146 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850010134.pdf.]

  • Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546561, doi:10.1002/qj.2401.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, doi:10.1007/s00382-010-0792-4.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., Q. Teng, F. W. Zwiers, G. J. Boer, J. Derome, and J. S. Fontecilla, 2009: Skill assessment of seasonal hindcasts from the Canadian historical forecast project. Atmos.–Ocean, 47, 204223, doi:10.3137/AO1101.2009.

    • Search Google Scholar
    • Export Citation
  • Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737, doi:10.1002/grl.50193.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, doi:10.5194/tc-9-269-2015.

    • Search Google Scholar
    • Export Citation
  • Lisæter, A. K., J. Rosanova, and G. Evensen, 2003: Assimilation of ice concentration in a coupled ice–ocean model, using the ensemble Kalman filter. Ocean Dyn., 53, 368388, doi:10.1007/s10236-003-0049-4.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., G. Peng, D. J. Scott, and M. H. Savoie, 2014: Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record. Polar Res., 33, 21004, doi:10.3402/polar.v33.21004.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013a: The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, doi:10.1175/MWR-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., W.-S. Lee, W. Wang, M. Chen, and A. Kumar, 2013b: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 15511556, doi:10.1002/grl.50317.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., G. A. Vecchi, M. Winton, and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, doi:10.1002/2014GL060799.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, doi:10.1029/2011JC007084.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, doi:10.1002/grl.50129.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, doi:10.1029/2012GL052676.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., A. Barrett, M. Serreze, and A. Schweiger, 2014a: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. Cryosphere, 8, 18391854, doi:10.5194/tc-8-1839-2014.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014b: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013. Geophys. Res. Lett., 41, 24112418, doi:10.1002/2014GL059388.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87, 58455852, doi:10.1029/JC087iC08p05845.

    • Search Google Scholar
    • Export Citation
  • Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2013: Assimilation of sea-ice concentration in a global climate model—Physical and statistical aspects. Ocean Sci., 9, 1936, doi:10.5194/os-9-19-2013.

    • Search Google Scholar
    • Export Citation
  • Tietsche, S., and Coauthors, 2014: Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophys. Res. Lett., 41, 10351043, doi:10.1002/2013GL058755.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, W., M. Chen, and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, doi:10.1175/MWR-D-12-00057.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, doi:10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1302 641 201
PDF Downloads 538 85 9