• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and R. W. Arritt, 2001: Mesoscale convective systems over the United States during the 1997–98 El Niño. Mon. Wea. Rev., 129, 24432457, doi:10.1175/1520-0493(2001)129<2443:MCSOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asadieh, B., and N. Y. Krakauer, 2015: Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci., 19, 877891, doi:10.5194/hess-19-877-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14, 121137, doi:10.1175/1520-0442(2001)013<0121:MMAOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., C. G. Nolte, and T. L. Otte, 2013: Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology. Climate Dyn., 40, 19031920, doi:10.1007/s00382-012-1440-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradbury, J. A., B. D. Keim, and C. P. Wake, 2003: The influence of regional storm tracking and teleconnections on winter precipitation in the northeastern United States. Ann. Assoc. Amer. Geogr., 93, 544556, doi:10.1111/1467-8306.9303002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brommer, D. M., 2012: Reconsidering duration in assessing the character of precipitation. Geogr. Compass, 6, 385400, doi:10.1111/j.1749-8198.2012.00494.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brommer, D. M., R. S. Cerveny, and R. C. Balling Jr., 2007: Characteristics of long-duration precipitation events across the United States. Geophys. Res. Lett., 34, L22712, doi:10.1029/2007GL031808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., D. Changnon, and T. R. Karl, 2006: Temporal and spatial characteristics of snowstorms in the contiguous United States. J. Appl. Meteor. Climatol., 45, 11411155, doi:10.1175/JAM2395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M.-Y., W. Shi, P. Xie, V. Silva, V. Kousky, R. Higgins, and J. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., G. A. Meehl, and J. M. Arblaster, 2012: Monsoon regimes and processes in CCSM4. Part II: African and American monsoon systems. J. Climate, 25, 26092621, doi:10.1175/JCLI-D-11-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. W. Pierce, D. Cayan, and A. Miller, 2013: Western U.S. extreme precipitation events and their relation to ENSO and PDO in CCSM4. J. Climate, 26, 42314243, doi:10.1175/JCLI-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., and T. Jiang, 2011: Intraseasonal modulation of the North Pacific storm track by tropical convection in boreal winter. J. Climate, 24, 11221137, doi:10.1175/2010JCLI3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. Changnon, T. Karl, and L. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, doi:10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and U. Dayan, 2008: Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Quart. J. Roy. Meteor. Soc., 134, 455467, doi:10.1002/qj.225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, doi:10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Gong, X.-F., and M. B. Richman, 1995: On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Climate, 8, 897931, doi:10.1175/1520-0442(1995)008<0897:OTAOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and et al. , 1999: Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243283, doi:10.1023/A:1005432803188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. Easterling, T. Karl, G. Hegerl, and V. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, doi:10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennessy, K. J., J. M. Gregory, and J. F. B. Mitchell, 1997: Changes in daily precipitation under enhanced greenhouse conditions. Climate Dyn., 13, 667680, doi:10.1007/s003820050189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. Yarosh, J. Janowiak, and K. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilgendorf, E. R., and R. H. Johnson, 1998: A study of the evolution of mesoscale convective systems using WSR-88D data. Wea. Forecasting, 13, 437452, doi:10.1175/1520-0434(1998)013<0437:ASOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holman, K. D., D. J. Lorenz, and M. Notaro, 2014: Influence of the background state on Rossby wave propagation into the Great Lakes region based on observations and model simulations. J. Climate, 27, 93029322, doi:10.1175/JCLI-D-13-00758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iorio, J. P., P. B. Duffy, B. Govindasamy, S. Thompson, M. Khairoutdinov, and D. Randall, 2004: Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Climate Dyn., 23, 243258, doi:10.1007/s00382-004-0440-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, T., and Y. Deng, 2011: Downstream modulation of North Pacific atmospheric river activity by East Asian cold surges. Geophys. Res. Lett., 38, L20807, doi:10.1029/2011GL049462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, T., K. J. Evans, Y. Deng, and X. Dong, 2014: Intermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges. J. Geophys. Res. Atmos., 119, 37233735, doi:10.1002/2013JD021209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., G.-R. Tan, and J. A. Skindlov, 1987: An evaluation of three clustering procedures for use in synoptic climatological classification. J. Climate Appl. Meteor., 26, 717730, doi:10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, doi:10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2002: Extratropical transformation of Typhoon Vicki (9807): Structural change and the role of upper-tropospheric disturbances. J. Meteor. Soc. Japan, 80, 229247, doi:10.2151/jmsj.80.229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, K. Redmond, and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett., 30, 1900, doi:10.1029/2003GL018052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, doi:10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and et al. , 2013: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, doi:10.1175/BAMS-D-11-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H.-Y. Weng, 2002: Recurrent teleconnection patterns linking summertime precipitation variability over East Asia and North America. J. Meteor. Soc. Japan, 80, 13091324, doi:10.2151/jmsj.80.1309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4, 10251043, doi:10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., M. A. Liniger, A. Menzel, N. Estrella, P. Della-Marta, C. Pfister, T. Rutishauser, and E. Xoplaki, 2007: Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophys. Res. Lett., 34, L12704, doi:10.1029/2007GL029951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, S., J. O. Roads, and R. J. Oglesb, 1997: Effects of resolution and physics on precipitation in the NCAR Community Climate Model. J. Geophys. Res., 102, 19 52919 541, doi:10.1029/97JD01428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998: The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process. Mon. Wea. Rev., 126, 303328, doi:10.1175/1520-0493(1998)126<0303:TSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., J. D. Locatelli, P. Hobbs, P. Wang, and J. Castle, 1995: Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part I: A synoptic-scale rainband associated with a dryline and lee trough. Mon. Wea. Rev., 123, 241264, doi:10.1175/1520-0493(1995)123<0241:SAEOWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, doi:10.1029/2005GL023680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128, 14901505, doi:10.1175/1520-0493(2000)128<1490:IMOSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. N. Paegle, and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, doi:10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myoung, B., and Y. Deng, 2009: Interannual variability of the cyclonic activity along the U.S. Pacific coast: Influences on the characteristics of winter precipitation in the western United States. J. Climate, 22, 57325747, doi:10.1175/2009JCLI2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, doi:10.1007/s00382-013-1817-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., J. E. Walsh, and D. J. Charlevoix, 2005: Severe and Hazardous Weather: An Introduction to High-Impact Meteorology. 2nd ed. Kendall Hunt Publishing Company, 161 pp.

  • Rojas, M., 2006: Multiply nested regional climate simulation for southern South America: Sensitivity to model resolution. Mon. Wea. Rev., 134, 22082223, doi:10.1175/MWR3167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudari, R., D. Entekhabi, and G. Roth, 2005: Large-scale atmospheric patterns associated with mesoscale features leading to extreme precipitation events in northwestern Italy. Adv. Water Resour., 28, 601614, doi:10.1016/j.advwatres.2004.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., Y. Kaspi, D. Waugh, G. Kiladis, D. Waliser, E. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. West Coast winter precipitation during ENSO events. J. Climate, 26, 63606382, doi:10.1175/JCLI-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., Y. Chang, M. Suarez, and P. Pegion, 2008: ENSO and wintertime extreme precipitation events over the contiguous United States. J. Climate, 21, 2239, doi:10.1175/2007JCLI1705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2013a: North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Climate, 26, 92099245, doi:10.1175/JCLI-D-12-00592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2013b: North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability. J. Climate, 26, 92479290, doi:10.1175/JCLI-D-12-00593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., S. Hameed, G. Potter, and J. Boyle, 1994: Simulation of the northern summer monsoon in the ECMWF model: Sensitivity to horizontal resolution. Mon. Wea. Rev., 122, 24612481, doi:10.1175/1520-0493(1994)122<2461:SOTNSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomozeiu, R., S. Stefan, and A. Busuioc, 2005: Winter precipitation variability and large-scale circulation patterns in Romania. Theor. Appl. Climatol., 81, 193201, doi:10.1007/s00704-004-0082-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., L. Hipps, R. Gillies, X. Jiang, and A. Moller, 2010: Circumglobal teleconnection and early summer rainfall in the US intermountain west. Theor. Appl. Climatol., 102, 245252, doi:10.1007/s00704-010-0260-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, J. H., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, doi:10.1080/01621459.1963.10500845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., 2013: Very extreme seasonal precipitation in the NARCCAP ensemble: Model performance and projections. Climate Dyn., 40, 5980, doi:10.1007/s00382-012-1393-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., R. Smith, G. Bala, and P. Duffy, 2010: The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Climate Dyn., 34, 241247, doi:10.1007/s00382-009-0656-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S.-Y., and S. Yang, 2014: Dynamical prediction of the early season rainfall over southern China by the NCEP Climate Forecast System. Wea. Forecasting, 29, 13911401, doi:10.1175/WAF-D-14-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S.-Y., S. Yang, Y. Deng, and Q.-P. Li, 2015: Skills of yearly prediction of the early-season rainfall over southern China by the NCEP Climate Forecast System. Theor. Appl. Climatol., 122, 743754, doi:10.1007/s00704-014-1333-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S.-Y., Y. Deng, and R. X. Black, 2016: Warm season dry spells in the central and eastern United States: Diverging skill in climate model representation. J. Climate, 29, 56175624, doi:10.1175/JCLI-D-16-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., A. Kapala, C. Simmer, and S. K. Gulev, 2004: Analysis of extreme precipitation over Europe from different reanalyses: A comparative assessment. Global Planet. Change, 44, 129161, doi:10.1016/j.gloplacha.2004.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 11
PDF Downloads 86 86 14

A Dynamical and Statistical Characterization of U.S. Extreme Precipitation Events and Their Associated Large-Scale Meteorological Patterns

View More View Less
  • 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
© Get Permissions
Restricted access

Abstract

Regional patterns of extreme precipitation events occurring over the continental United States are identified via hierarchical cluster analysis of observed daily precipitation for the period 1950–2005. Six canonical extreme precipitation patterns (EPPs) are isolated for the boreal warm season and five for the cool season. The large-scale meteorological pattern (LMP) inducing each EPP is identified and used to create a “base function” for evaluating a climate model’s potential for accurately representing the different patterns of precipitation extremes. A parallel analysis of the Community Climate System Model, version 4 (CCSM4), reveals that the CCSM4 successfully captures the main U.S. EPPs for both the warm and cool seasons, albeit with varying degrees of accuracy. The model’s skill in simulating each EPP tends to be positively correlated with its capability in representing the associated LMP. Model bias in the occurrence frequency of a governing LMP is directly related to the frequency bias in the corresponding EPP. In addition, however, discrepancies are found between the CCSM4’s representation of LMPs and EPPs over regions such as the western United States and Midwest, where topographic precipitation influences and organized convection are prominent, respectively. In these cases, the model representation of finer-scale physical processes appears to be at least equally important compared to the LMPs in driving the occurrence of extreme precipitation.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0910.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yi Deng, yi.deng@eas.gatech.edu

Abstract

Regional patterns of extreme precipitation events occurring over the continental United States are identified via hierarchical cluster analysis of observed daily precipitation for the period 1950–2005. Six canonical extreme precipitation patterns (EPPs) are isolated for the boreal warm season and five for the cool season. The large-scale meteorological pattern (LMP) inducing each EPP is identified and used to create a “base function” for evaluating a climate model’s potential for accurately representing the different patterns of precipitation extremes. A parallel analysis of the Community Climate System Model, version 4 (CCSM4), reveals that the CCSM4 successfully captures the main U.S. EPPs for both the warm and cool seasons, albeit with varying degrees of accuracy. The model’s skill in simulating each EPP tends to be positively correlated with its capability in representing the associated LMP. Model bias in the occurrence frequency of a governing LMP is directly related to the frequency bias in the corresponding EPP. In addition, however, discrepancies are found between the CCSM4’s representation of LMPs and EPPs over regions such as the western United States and Midwest, where topographic precipitation influences and organized convection are prominent, respectively. In these cases, the model representation of finer-scale physical processes appears to be at least equally important compared to the LMPs in driving the occurrence of extreme precipitation.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0910.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yi Deng, yi.deng@eas.gatech.edu

Supplementary Materials

    • Supplemental Materials (DOCX 7.45 MB)
Save