• Bamzai, A. S., and J. Shukla, 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12, 31173112, doi:10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and L. Marx, 2000: COAL AGCM simulation of the effect of anomalous spring snow over Eurasia on the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 126, 25752584, doi:10.1002/qj.49712656811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dumenil, U. Schlese, and E. Roeckner, 1988: The effect of Eurasian snow cover on global climate. Science, 239, 504507, doi:10.1126/science.239.4839.504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanford, H. F., 1884: On the connection of the Himalayan snowfall with dry winds and seasons of droughts in India. Proc. Roy. Soc. London, 37, 322, doi:10.1098/rspl.1884.0003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buermann, W., B. Lintner, and C. Bonfils, 2005: A wintertime Arctic Oscillation signature on early season Indian Ocean monsoon intensity. J. Climate, 18, 22472289, doi:10.1175/JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Dash, S. K., G. P. Singh, M. S. Shekhar, and A. D. Vernekar, 2005: Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia. Climate Dyn., 24, 110, doi:10.1007/s00382-004-0448-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delsole, T., and J. Shukla, 2012: Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophys. Res. Lett., 39, L09703, doi:10.1029/2012GL051279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, B., and O. S. R. U. Bhanukumar, 1982: An apparent relationship between Eurasian spring snow cover and the advance period of the Indian summer monsoon. J. Appl. Meteor., 21, 19291932, doi:10.1175/1520-0450(1982)021<1929:AARBES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, B., S. N. Kathuria, and O. B. Kumar, 1985: Himalayan summer snow cover area and withdrawal of the Indian summer monsoon. J. Climate Appl. Meteor., 24, 865868, doi:10.1175/1520-0450(1985)024<0865:HSSCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1983: Land surface processes and climate—Surface albedos and energy balance. Advances in Geophysics, Vol. 25, Academic Press, 305353, doi:10.1016/S0065-2687(08)60176-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., 1984: Eurasian snow cover versus Indian monsoon rainfall—An extension of the Hahn–Shukla results. J. Climate Appl. Meteor., 23, 171173, doi:10.1175/1520-0450(1984)023<0171:ESCVIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

  • Dirmeyer, P. A. and S. Halder, 2016a: Sensitivity of numerical weather forecasts to initial soil moisture variations in CFSv2. Wea. Forecasting, 31, 19731983, doi:10.1175/WAF-D-16-0049.1.

    • Crossref
    • Export Citation
  • Dirmeyer, P. A. and S. Halder, 2016b: Application of the land–atmosphere coupling paradigm to the operational Coupled Forecast System (CFSv2). J. Hydrometeor., 18, 85108, doi:10.1175/JHM-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 12901294, doi:10.1002/2013GL058826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and P. J. Valdes, 1998: Modelling the Asian summer monsoon rainfall and Eurasian winter/spring snow mass. Quart. J. Roy. Meteor. Soc., 124, 25672596, doi:10.1002/qj.49712455203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., 2010: Relative contribution of soil moisture and snow mass to seasonal climate predictability: A pilot study. Climate Dyn., 34, 797818, doi:10.1007/s00382-008-0508-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douville, H., and J.-F. Royer, 1996: Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Météo-France GCM. Climate Dyn., 12, 449466, doi:10.1007/BF02346818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., 2004: A stratified diagnosis of the Indian monsoon–Eurasian snow cover relationship. J. Climate, 17, 11101122, doi:10.1175/1520-0442(2004)017<1110:ASDOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and F. Molteni, 1999: Ensemble simulations of Eurasian snow-depth anomalies and their influence on the summer Asian monsoon. Quart. J. Roy. Meteor. Soc., 125, 25972610, doi:10.1002/qj.49712555913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, J. Cohen, and D. Robinson, 2004: Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res., 109, D06107, doi:10.1029/2003JD004160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2007: South Asian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Coupled System, 1st ed. W. K. M. Lau and D. Waliser, Eds., Springer, 21–72, doi:10.1007/978-3-642-13914-7.

    • Crossref
    • Export Citation
  • Goswami, B. N., and P. K. Xavier, 2005: Dynamics of “internal” interannual variability of Indian summer monsoon in a GCM. J. Geophys. Res., 110, D24104, doi:10.1029/2005JD006042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: A Technical Guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 281 pp.

  • Hahn, D. G., and J. Shukla, 1976: An apparent relationship between the Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33, 24612462, doi:10.1175/1520-0469(1976)033<2461:AARBES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halder, S., P. A. Dirmeyer, and S. K. Saha, 2015: Sensitivity of the mean and variability of Indian summer monsoon to land surface schemes in RegCM4: Understanding coupled land–atmosphere feedbacks. J. Geophys. Res., 120, 94379458, doi:10.1002/2015JD023101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halder, S., S. K. Saha, P. A. Dirmeyer, T. N. Chase, and B. N. Goswami, 2016: Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrol. Earth Syst. Sci., 20, 17651784, doi:10.5194/hess-20-1765-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., X. Qu, and J. D. Neelin, 2008: Improving predictions of summer climate change in the United States. Geophys. Res. Lett., 35, L01702, doi:10.1029/2007GL032012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillations. J. Climate, 17, 10221039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khandekar, M. L., 1991: Eurasian snow cover, Indian monsoon and El Niño/Southern Oscillation—A synthesis. Atmos.–Ocean, 29, 636647, doi:10.1080/07055900.1991.9649422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R.D., and et al. , 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kothawale, D. R., and J. R. Kulkarni, 2014: Performance of all-India southwest monsoon seasonal rainfall when monthly rainfall reported as deficit/excess. Meteor. Appl., 21, 619634, doi:10.1002/met.1385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., and A. Kulkarni, 1999: Climatology and variability of historical Soviet snow depth data: Some new perspectives in snow–Indian monsoon teleconnections. Climate Dyn., 15, 475489, doi:10.1007/s003820050294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 43664377, doi:10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., C. Zhang, and M. Sugi, 2000: Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 13541372, doi:10.1175/1520-0469(2000)057<1354:DOBITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., V. Kumar, M. Sugi, and J. Yoshimura, 2009: Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J. Atmos. Sci., 66, 553578, doi:10.1175/2008JAS2723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., and et al. , 2011: The once and future pulse of Indian summer monsoon. Climate Dyn., 36, 21592170, doi:10.1007/s00382-010-0974-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madhura, R. K., R. Krishnan, J. V. Revadekar, M. Mujumdar, and B. N. Goswami, 2015: Changes in western disturbances over the western Himalayas in a warming environment. Climate Dyn., 44, 11571168, doi:10.1007/s00382-014-2166-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G., 1994: Coupled land–ocean–atmosphere processes and South Asian monsoon variability. Science, 266, 263267, doi:10.1126/science.266.5183.263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Z.-L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7, 937952, doi:10.1175/JHM538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pai, D. S., and M. Rajeevan, 2009: Summer monsoon onset over Kerala: New definition and prediction. J. Earth Syst. Sci., 118, 123135, doi:10.1007/s12040-009-0020-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., and S. Yang, 1995: Relationships between regional Indian summer monsoon rainfall and Eurasian snow cover. Adv. Atmos. Sci., 12, 143150, doi:10.1007/BF02656828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and H. Douville, 2010: Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations. Climate Dyn., 34, 643660, doi:10.1007/s00382-009-0565-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, A., S. K. Saha, S. Pokhrel, K. Sujith, and S. Halder, 2015: Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability. J. Geophys. Res., 120, 45514563, doi:10.1002/2015JD023159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., 1993: Monitoring Northern Hemisphere snow cover. Snow watch ‘92: Detection strategies for snow and ice, National Snow and Ice Data Center Glaciological Data Rep. GD-25, 1–25. [Available online at https://nsidc.org/pubs/documents/gd/GD-25_web.pdf.]

  • Robinson, D. A., and A. Frei, 2000: Seasonal variability of Northern Hemisphere snow extent using visible satellite data. Prof. Geogr., 52, 307315, doi:10.1111/0033-0124.00226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., M. Mu, K. Vinnikov, and D. Robinson, 2003: Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res., 108, 4131, doi:10.1029/2002JD002286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and et al. , 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

  • Ropelewski, C. F., A. Robock, and M. Matson, 1984: Comments on “An apparent relationship between the Eurasian snow cover and Indian monsoon rainfall.” J. Climate Appl. Meteor., 23, 341342, doi:10.1175/1520-0450(1984)023<0341:COARBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Saha, S. K., S. Halder, K. K. Kumar, and B. N. Goswami, 2011: Pre-onset land surface processes and ‘internal’ interannual variabilities of the Indian summer monsoon. Climate Dyn., 36, 20772089, doi:10.1007/s00382-010-0886-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S. K., S. Halder, A. S. Rao, and B. N. Goswami, 2012: Modulation of ISOs by land–atmosphere feedback and contribution to the interannual variability of the Indian summer monsoon. J. Geophys. Res., 117, D13101, doi:10.1029/2011JD017291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S. K., S. Pokhrel, and H. S. Chaudhari, 2013: Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun. Climate Dyn., 41, 18011815, doi:10.1007/s00382-012-1617-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahai, A. K., R. Chattopadhyay, S. Joseph, R. Mandal, A. Dey, S. Abhilash, R. P. M. Krishna, and N. Borah, 2015: Real-time performance of a multi-model ensemble-based extended range forecast system in predicting the 2014 monsoon season based on NCEP-CFSv2. Curr. Sci., 109, 18021813, doi:10.18520/v109/i10/1802-1813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samanta, D., M. K. Dash, B. N. Goswami, and P. C. Pandey, 2015: Extratropical anticyclonic Rossby wave breaking and Indian summer monsoon failure. Climate Dyn., 46, 15471562, doi:10.1007/s00382-015-2661-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankar-Rao, M., K. M. Lau, and S. Yang, 1996: On the relationship between Eurasian snow cover and the Asian summer monsoon. Int. J. Climatol., 16, 605616, doi:10.1002/(SICI)1097-0088(199606)16:6<605::AID-JOC41>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. Wang, R. D. Koster, and M. J. Suarez, 2014: Northern Eurasian heat waves and droughts. J. Climate, 27, 31693207, doi:10.1175/JCLI-D-13-00360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senan, R., and et al. , 2016: Impact of springtime Himalayan–Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts. Climate Dyn., 47, 27092725, doi:10.1007/s00382-016-2993-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, M., 2001: Climate memory of snow mass as soil moisture over central Eurasia. J. Geophys. Res., 106, 33 39333 403, doi:10.1029/2001JD000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1984: Predictability of time averages. Part II: The influence of the boundary forcing. Problems and Prospects in Long and Medium Range Weather Forecasting, D. M. Burridge and E. Kallen, Eds., Topics in Atmospheric and Oceanographic Sciences, Springer-Verlag, 155–206, doi:10.1007/978-3-642-82132-5_6.

    • Crossref
    • Export Citation
  • Shukla, J., and D. A. Mooley, 1987: Empirical prediction of the summer monsoon rainfall over India. Mon. Wea. Rev., 115, 695703, doi:10.1175/1520-0493(1987)115<0695:EPOTSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, doi:10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soman, M. K., and K. Krishna Kumar, 1993: Space-time evolution of meteorological features associated with the onset of Indian summer monsoon. Mon. Wea. Rev., 121, 11771194, doi:10.1175/1520-0493(1993)121<1177:STEOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and J. M. Slingo, 2011: Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Center GCM. Climate Dyn., 36, 17171735, doi:10.1007/s00382-010-0805-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vernekar, A. D., J. Zhou, and J. Shukla, 1995: The effect of Eurasian snow cover on the Indian monsoon. J. Climate, 8, 248266, doi:10.1175/1520-0442(1995)008<0248:TEOESC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walland, D. J., and I. Simmonds, 1996: Modelled atmospheric response to changes in Northern Hemisphere snow cover. Climate Dyn., 13, 2534, doi:10.1007/s003820050150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J. and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., and S. G. Warren, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 27122733, doi:10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2011: Snow–atmosphere coupling strength in a global atmospheric model. Geophys. Res. Lett., 38, L13401, doi:10.1029/2011GL048049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2013a: Snow–atmosphere coupling strength. Part I: Effect of model biases. J. Hydrometeor., 14, 389403, doi:10.1175/JHM-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2013b: Snow–atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J. Hydrometeor., 14, 404418, doi:10.1175/JHM-D-11-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., H. Gao, and Y.-Q. Li, 2009: Sensible heating over the Tibetan Plateau linked to the onset of Asian monsoon. Atmos. Oceanic Sci. Lett., 2, 350356, doi:10.1080/16742834.2009.11446833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., 1996: ENSO–snow–monsoon associations and seasonal–interannual predictions. Int. J. Climatol., 16, 125134, doi:10.1002/(SICI)1097-0088(199602)16:2<125::AID-JOC999>3.0.CO;2-V.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 195 29
PDF Downloads 209 209 34

Relation of Eurasian Snow Cover and Indian Summer Monsoon Rainfall: Importance of the Delayed Hydrological Effect

View More View Less
  • 1 Center for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

Abstract

This observationally based study demonstrates the importance of the delayed hydrological response of snow cover and snowmelt over the Eurasian region and Tibet for variability of Indian summer monsoon rainfall during the first two months after onset. Using snow cover fraction and snow water equivalent data during 1967–2003, it is demonstrated that, although the snow-albedo effect is prevalent over western Eurasia, the delayed hydrological effect is strong and persistent over the eastern part. Long soil moisture memory and strong sensitivity of surface fluxes to soil moisture variations over eastern Asia and Tibet provide a mechanism for soil moisture anomalies generated by anomalies in winter and spring snowfall to affect rainfall during the initial months in summer. Dry soil moisture anomalies over the eastern Eurasian region associated with anomalous heating at the surface and midtroposphere help in anchoring of an anomalous upper-tropospheric “blocking” ridge around 100°E and its persistence. This not only leads to prolonged weakening of the subtropical westerly jet but also shifts its position southward of 30°N, followed by penetration of anomalous troughs in the westerlies into the Indian region. Simultaneously, intrusion of cold and dry air from the midlatitudes can reduce the convective instability and hence rainfall over India after the onset. Such a southward shift of the jet can also significantly weaken the vertical easterly wind shear over the Indian region in summer and lead to decrease in rainfall. This delayed hydrological effect also has the potential to modulate the snow–atmosphere coupling strength for temperature and precipitation in operational forecast models through soil moisture–evaporation–precipitation feedbacks.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Subhadeep Halder, shalder3@gmu.edu

Abstract

This observationally based study demonstrates the importance of the delayed hydrological response of snow cover and snowmelt over the Eurasian region and Tibet for variability of Indian summer monsoon rainfall during the first two months after onset. Using snow cover fraction and snow water equivalent data during 1967–2003, it is demonstrated that, although the snow-albedo effect is prevalent over western Eurasia, the delayed hydrological effect is strong and persistent over the eastern part. Long soil moisture memory and strong sensitivity of surface fluxes to soil moisture variations over eastern Asia and Tibet provide a mechanism for soil moisture anomalies generated by anomalies in winter and spring snowfall to affect rainfall during the initial months in summer. Dry soil moisture anomalies over the eastern Eurasian region associated with anomalous heating at the surface and midtroposphere help in anchoring of an anomalous upper-tropospheric “blocking” ridge around 100°E and its persistence. This not only leads to prolonged weakening of the subtropical westerly jet but also shifts its position southward of 30°N, followed by penetration of anomalous troughs in the westerlies into the Indian region. Simultaneously, intrusion of cold and dry air from the midlatitudes can reduce the convective instability and hence rainfall over India after the onset. Such a southward shift of the jet can also significantly weaken the vertical easterly wind shear over the Indian region in summer and lead to decrease in rainfall. This delayed hydrological effect also has the potential to modulate the snow–atmosphere coupling strength for temperature and precipitation in operational forecast models through soil moisture–evaporation–precipitation feedbacks.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Subhadeep Halder, shalder3@gmu.edu
Save