• An, Z. S., J. E. Kutzbach, W. L. Prell, and S. C. Porter, 2001: Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature, 411, 6266, doi:10.1038/35075035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, Z. S., and et al. , 2015: Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci., 43, 29–77, doi:10.1146/annurev-earth-060313-054623.

    • Crossref
    • Export Citation
  • Baldwin, J., and G. Vecchi, 2016: Influence of the Tian Shan on arid extratropical Asia. J. Climate, 29, 5741–5762, doi:10.1175/JCLI-D-15-0490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and J. V. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 22792287, doi:10.1175/JCLI-D-12-00493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., J. V. Hurley, and V. S. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 10351048, doi:10.1002/qj.2454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on the midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, doi:10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. K., and et al. , 2005: Late Cenozoic uplift of southeastern Tibet. Geology, 33, 525528, doi:10.1130/G21265.1.

  • Clark, M. K., L. H. Royden, K. X. Whipple, B. C. Burchfiel, X. Zhang, and W. Tang, 2006: Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J. Geophys. Res., 11, F03002, doi:10.1029/2005JF000294.

    • Search Google Scholar
    • Export Citation
  • Clift, P. D., and Z. Sun, 2006: The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification. J. Geophys. Res., 111, B06405, doi:10.1029/2005JB004048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, A. K., A. Yuvaraja, M. Prakasam, S. C. Clemens, and A. Velu, 2015: Evolution of the South Asian monsoon wind system since the late Middle Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 438, 160167, doi:10.1016/j.palaeo.2015.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and S. Manabe, 1975: The role of mountains in the South Asian monsoon circulation. J. Atmos. Sci., 32, 15151541, doi:10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoke, G. D., J. Liu-Zeng, M. T. Hren, G. K. Wissink, and C. N. Garzione, 2014: Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sci. Lett., 394, 270278, doi:10.1016/j.epsl.2014.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroon, D., T. Steens, and S. R. Troelstra, 1991: Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. Ocean Drill. Program, 117, 257263.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., P. J. Guetter, and W. F. Ruddiman, 1989: Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: Numerical experiments. J. Geophys. Res., 94, 18 39318 407, doi:10.1029/JD094iD15p18393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., and Z. Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 223245, doi:10.1016/S0031-0182(01)00488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., and B. W. Dong, 2013: Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin. Sci. Bull., 34, 42774291, doi:10.1007/s11434-013-5987-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., H. Sun, Y. F. Miao, B. W. Dong, and Z. Y. Yin, 2015: Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat. Sci. Rev., 116, 114, doi:10.1016/j.quascirev.2015.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu-Zeng, J., P. Tapponnier, Y. Gaudemer, and L. Ding, 2008: Quantifying landscape differences across the Tibetan Plateau: Implications for topographic relief evolution. J. Geophys. Res., 113, F04018, doi:10.1029/2007JF000897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, D., W. Boos, and Z.-M. Kuang, 2014: Effects of orography and surface heat fluxes on the South Asian summer monsoon. J. Climate, 27, 66476659, doi:10.1175/JCLI-D-14-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 342, doi:10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and A. J. Broccoli, 1990: Mountains and arid climates of middle latitudes. Science, 247, 192194, doi:10.1126/science.247.4939.192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y. F., M. Herrmann, F. L. Wu, X. L. Yan, and S. L. Yang, 2012: What controlled Mid–Late Miocene long-term aridification in central Asia? Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev., 112, 155172, doi:10.1016/j.earscirev.2012.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, doi:10.1146/annurev-earth-040809-152456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., J. C. H. Chiang, and S. Bordoni, 2012: The mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoon. J. Climate, 25, 23942407, doi:10.1175/JCLI-D-11-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prell, W. L., and J. E. Kutzbach, 1992: Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647652, doi:10.1038/360647a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quade, J., T. E. Cerling, and J. R. Bowman, 1989: Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342, 163166, doi:10.1038/342163a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., and P. Molnar, 2013: Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J. Geophys. Res. Atmos., 118, 11701178, doi:10.1002/jgrd.50124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodriguez, M., N. Chamot-Rooke, P. Huchon, M. Fournier, and M. Delescluse, 2014: The Owen Ridge uplift in the Arabian Sea: Implications for the sedimentary record of Indian monsoon in Late Miocene. Earth Planet. Sci. Lett., 394, 112, doi:10.1016/j.epsl.2014.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, Y. Y., Z. G. Shi, X. D. Liu, and Z. S. An, 2015: Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon. J. Geophys. Res. Atmos., 120, 4764–4782, doi:10.1002/2015JC011255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z. G., X. D. Liu, Z. S. An, B. Q. Yi, P. Yang, and N. Mahowald, 2011: Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: Contributions from the regional tectonic uplift and global climate change. Climate Dyn., 37, 22892301, doi:10.1007/s00382-011-1078-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z. G., X. D. Liu, Y. M. Liu, Y. Y. Sha, and T. T. Xu, 2015: Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Climate Dyn., 42, 30673076, doi:10.1007/s00382-014-2217-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, T., and T. Koike, 2010: Role of convective heating in the seasonal evolution of the Asian summer monsoon. J. Geophys. Res., 115, D14103, doi:10.1029/2009JD013418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, T., K. Taniguchi, and T. Koike, 2010: Mechanism of upper tropospheric warming around the Tibetan Plateau at the onset phase of the Asian summer monsoon. J. Geophys. Res., 115, D02106, doi:10.1029/2008JD011678.

    • Search Google Scholar
    • Export Citation
  • Tang, H., A. Micheels, J. T. Eronen, B. Ahrens, and M. Fortelius, 2013: Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiment. Climate Dyn., 40, 15311549, doi:10.1007/s00382-012-1603-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, Y. T., B. P. Kohn, S. B. Hu, and A. J. W. Gleadow, 2015: Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: Implications for crustal dynamics. Geophys. Res. Lett., 42, 2935, doi:10.1002/2014GL062383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, E., E. Kirby, K. P. Furlong, M. van Soest, G. Xu, X. Shi, P. J. J. Kamp, and K. V. Hodges, 2012: Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat. Geosci., 5, 640645, doi:10.1038/ngeo1538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. M. Xu, N. H. Saji, and Y. Q. Wang, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 34203429, doi:10.1175/JCLI3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and C. F. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305323, doi:10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., D. B. Jiang, X. D. Liu, and Z. P. Tian, 2012: Modeling the climate effects of different subregional uplifts within the Himalaya-Tibetan Plateau on Asian summer monsoon evolution. Chin. Sci. Bull., 57, 46174626, doi:10.1007/s11434-012-5284-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 18
PDF Downloads 52 52 16

Effect of Yunnan–Guizhou Topography at the Southeastern Tibetan Plateau on the Indian Monsoon

View More View Less
  • 1 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, and Joint Center for Global Change Studies, Beijing, China
  • | 2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
  • | 3 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Topographic insulation is one of the primary origins for the influence of the Tibetan Plateau (TP) on Asian climate. The Yunnan–Guizhou (YG) Plateau, at the southeastern margin of the TP, is known to block the northern branch of the Indian monsoon circulation in summer. However, it is an open question whether this blocking feeds back to the monsoon. In this study, the effect of the YG topography on the Indian monsoon and its comparison with that of the TP were evaluated using general circulation model experiments. The results showed that the TP strengthens the monsoon precipitation, especially during the onset. However, the YG topography significantly weakens the monsoon. With the YG topography, strengthened low-level airflow around the YG Plateau induces anomalous anticyclonic winds to the southwest, and the changes remodulate the whole circulation structure over Asia. As a result, the Indian monsoon becomes weakened from the Bay of Bengal to the Indian subcontinent and Arabian Sea, as does the associated precipitation. In addition, the YG topography affects the anomalous warming center over the TP and the precipitation during the monsoon onset. The YG-reduced summer precipitation occupied approximately one-third of the total increment compared to the entire TP. The Indian monsoon weakened by YG topography distinctly opposes the traditional paleoclimatic viewpoint that all of the TP topography contributes to the monsoon strengthening. In fact, the climatic effect of the TP depends closely upon both its central and marginal topography, and the topography of its subterrains does not necessarily play a similar role.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zhengguo Shi, shizg@ieecas.cn

Abstract

Topographic insulation is one of the primary origins for the influence of the Tibetan Plateau (TP) on Asian climate. The Yunnan–Guizhou (YG) Plateau, at the southeastern margin of the TP, is known to block the northern branch of the Indian monsoon circulation in summer. However, it is an open question whether this blocking feeds back to the monsoon. In this study, the effect of the YG topography on the Indian monsoon and its comparison with that of the TP were evaluated using general circulation model experiments. The results showed that the TP strengthens the monsoon precipitation, especially during the onset. However, the YG topography significantly weakens the monsoon. With the YG topography, strengthened low-level airflow around the YG Plateau induces anomalous anticyclonic winds to the southwest, and the changes remodulate the whole circulation structure over Asia. As a result, the Indian monsoon becomes weakened from the Bay of Bengal to the Indian subcontinent and Arabian Sea, as does the associated precipitation. In addition, the YG topography affects the anomalous warming center over the TP and the precipitation during the monsoon onset. The YG-reduced summer precipitation occupied approximately one-third of the total increment compared to the entire TP. The Indian monsoon weakened by YG topography distinctly opposes the traditional paleoclimatic viewpoint that all of the TP topography contributes to the monsoon strengthening. In fact, the climatic effect of the TP depends closely upon both its central and marginal topography, and the topography of its subterrains does not necessarily play a similar role.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zhengguo Shi, shizg@ieecas.cn
Save