• Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351, 600604, doi:10.1126/science.aac8083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambrose, S. M., and S. M. Sterling, 2014: Global patterns of annual actual evapotranspiration with land-cover type: Knowledge gained from a new observation-based database. Hydrol. Earth Syst. Sci. Discuss., 11, 12 10312 135, doi:10.5194/hessd-11-12103-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and et al. , 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and et al. , 2013: The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisier, J.-P., and et al. , 2012: Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. J. Geophys. Res., 117, D12116, doi:10.1029/2011JD017106.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., S. Sitch, W. von Bloh, M. Claussen, E. Bauer, and W. Cramer, 2004: Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biol., 10, 12531266, doi:10.1111/j.1365-2486.2004.00812.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter12_FINAL.pdf.]

  • Collins, W. D., and et al. , 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

  • Collins, W. J., and et al. , 2008: Evaluation of the HadGEM2 model. Met Office Hadley Centre Tech. Note HCTN 74, 47 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/8/7/HCTN_74.pdf.]

  • Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112, doi:10.1175/2009JCLI3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and et al. , 2012: Determining robust impacts of land-use-induced land-cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, doi:10.1175/JCLI-D-11-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findell, K. L., E. Shevliakova, P. C. D. Milly, and R. J. Stouffer, 2007: Modeled impact of anthropogenic land-cover change on climate. J. Climate, 20, 36213634, doi:10.1175/JCLI4185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foley, J. A., and et al. , 2005: Global consequences of land use. Science, 309, 570574, doi:10.1126/science.1111772.

  • Ge, J., 2010: MODIS observed impacts of intensive agriculture on surface temperature in the southern Great Plains. Int. J. Climatol., 30, 19942003, doi:10.1002/joc.2093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Hurtt, G. C., and et al. , 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem. Cycles, 15, 417433, doi:10.1029/1999GB001232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., A. Beusen, G. van Drecht, and M. de Vos, 2011: The HYDE 3.1 spatially explicit database of human-induced land use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 7386, doi:10.1111/j.1466-8238.2010.00587.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., P. A. Dirmeyer, V. Merwade, T. DelSole, J. M. Adams, and D. Niyogi, 2013: Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. J. Geophys. Res., 118, 63376353, doi:10.1002/jgrd.50463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., and et al. , 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, doi:10.1038/nature10588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, and S. Li, 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun., 6, 6603, doi:10.1038/ncomms7603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loarie, S. R., D. B. Lobell, G. P. Asner, Q. Mu, and C. B. Field, 2011: Direct impacts on local climate of sugar-cane expansion in Brazil. Nat. Climate Change, 1, 105109, doi:10.1038/nclimate1067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127, doi:10.1016/S1463-5003(02)00015-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marti, O., and et al. , 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126, doi:10.1007/s00382-009-0640-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., and M. R. Dix, 2008: An updated description of the Conformal-Cubic Atmospheric Model. High Resolution Numerical Modelling of the Atmosphere and the Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 51–75.

    • Crossref
    • Export Citation
  • McPherson, R. A., D. J. Sternsrud, and K. C. Crawford, 2004: The impact of Oklahoma’s winter wheat belt on the mesoscale environment. Mon. Wea. Rev., 132, 405421, doi:10.1175/1520-0493(2004)132<0405:TIOOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S.-S., and et al. , 2014: Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA, 111, 29152919, doi:10.1073/pnas.1315126111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and et al. , 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., F. B. Avila, G. Abramowitz, Y. P. Wang, S. J. Phipps, and N. de Noblet-Ducoudré, 2011: Importance of background climate in determining impact of land-cover change on regional climate. Nat. Climate Change, 1, 472475, doi:10.1038/nclimate1294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pongratz, J., C. Reick, T. Raddatz, and M. Claussen, 2008: A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles, 22, GB3032, doi:10.1029/2007GB003153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pongratz, J., C. Reick, T. Raddatz, and M. Claussen, 2010: Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett., 37, L08808, doi:10.1029/2010GL043010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raddatz, T. J., and et al. , 2007: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565574, doi:10.1007/s00382-007-0247-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027, doi:10.1029/1999GB900046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al. , 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791, doi:10.1175/JCLI3824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salas-Mélia, D., and et al. , 2005: Description and validation of the CNRM-CM3 global coupled climate model. CNRM Working Note 103, 36 pp. [Available online at http://www.cnrm.meteo.fr/scenario2004/paper_cm3.pdf.]

  • Strengers, B. J., and et al. , 2010: Assessing 20th century climate–vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation–climate model. Int. J. Climatol., 30, 20552065, doi:10.1002/joc.2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanden Broucke, S., S. Luyssaert, E. L. Davin, I. Janssens, and N. van Lipzig, 2015: New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations. J. Geophys. Res. Atmos., 120, 54175436, doi:10.1002/2015JD023095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickham, J. D., T. G. Wade, and K. H. Riitters, 2012: Comparison of cropland and forest surface temperatures across the conterminous United States. Agric. For. Meteor., 166–167, 137143, doi:10.1016/j.agrformet.2012.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., and et al. , 2014: Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett., 9, 034002, doi:10.1088/1748-9326/9/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, K., and R. B. Jackson, 2014: Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr., 84, 329353, doi:10.1890/12-1705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 48
PDF Downloads 155 155 46

Historical Land-Cover Change Impacts on Climate: Comparative Assessment of LUCID and CMIP5 Multimodel Experiments

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
© Get Permissions
Restricted access

Abstract

During the industrial period, many regions experienced a reduction in forest cover and an expansion of agricultural areas, in particular North America, northern Eurasia, and South Asia. Here, results from the Land-Use and Climate, Identification of Robust Impacts (LUCID) and CMIP5 model intercomparison projects are compared in order to investigate how land-cover changes (LCC) in these regions have locally impacted the biophysical land surface properties, like albedo and evapotranspiration, and how this has affected seasonal mean temperature as well as its diurnal cycle. The impact of LCC is extracted from climate simulations, including all historical forcings, using a method that is shown to capture well the sign and the seasonal cycle of the impacts diagnosed from single-forcing experiments in most cases.

The model comparison reveals that both the LUCID and CMIP5 models agree on the albedo-induced reduction of mean winter temperatures over midlatitudes. In contrast, there is less agreement concerning the response of the latent heat flux and, subsequently, mean temperature during summer, when evaporative cooling plays a more important role. Overall, a majority of models exhibit a local warming effect of LCC during this season, contrasting with results from the LUCID studies. A striking result is that none of the analyzed models reproduce well the changes in the diurnal cycle identified in present-day observations of the effect of deforestation. However, overall the CMIP5 models better simulate the observed summer daytime warming effect compared to the LUCID models, as well as the winter nighttime cooling effect.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0213.s1.

Publisher's Note: This article was revised on 27 April 2017 to correct an editing error in the second paragraph of the Introduction.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Quentin Lejeune, quentin.lejeune@env.ethz.ch; Edouard L. Davin, edouard.davin@env.ethz.ch

Abstract

During the industrial period, many regions experienced a reduction in forest cover and an expansion of agricultural areas, in particular North America, northern Eurasia, and South Asia. Here, results from the Land-Use and Climate, Identification of Robust Impacts (LUCID) and CMIP5 model intercomparison projects are compared in order to investigate how land-cover changes (LCC) in these regions have locally impacted the biophysical land surface properties, like albedo and evapotranspiration, and how this has affected seasonal mean temperature as well as its diurnal cycle. The impact of LCC is extracted from climate simulations, including all historical forcings, using a method that is shown to capture well the sign and the seasonal cycle of the impacts diagnosed from single-forcing experiments in most cases.

The model comparison reveals that both the LUCID and CMIP5 models agree on the albedo-induced reduction of mean winter temperatures over midlatitudes. In contrast, there is less agreement concerning the response of the latent heat flux and, subsequently, mean temperature during summer, when evaporative cooling plays a more important role. Overall, a majority of models exhibit a local warming effect of LCC during this season, contrasting with results from the LUCID studies. A striking result is that none of the analyzed models reproduce well the changes in the diurnal cycle identified in present-day observations of the effect of deforestation. However, overall the CMIP5 models better simulate the observed summer daytime warming effect compared to the LUCID models, as well as the winter nighttime cooling effect.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0213.s1.

Publisher's Note: This article was revised on 27 April 2017 to correct an editing error in the second paragraph of the Introduction.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Quentin Lejeune, quentin.lejeune@env.ethz.ch; Edouard L. Davin, edouard.davin@env.ethz.ch

Supplementary Materials

    • Supplemental Materials (PDF 25.84 MB)
Save