• Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. P., B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dyn., 21, 477491, doi:10.1007/s00382-003-0313-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Ming, N. D. Singer, and J. Lu, 2011: Testing the Clausius–Clapeyron constraint on the aerosol‐induced changes in mean and extreme precipitation. Geophys. Res. Lett., 38, L04807, doi:10.1029/2010GL046435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and C. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, doi:10.1175/JCLI-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., C.-A. Chen, P.-H. Tan, and K. T. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate, 25, 32913306, doi:10.1175/JCLI-D-11-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006a: Recent climatology, variability and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

  • Dai, A., 2006b: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, doi:10.1002/wcc.81.

  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

  • Dai, A., 2016: Historical and future changes in streamflow and continental runoff: A review. Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts, Geophys. Monogr., Vol. 221, Amer. Geophys. Union, 17–37.

    • Crossref
    • Export Citation
  • Durre, I., C. N. Williams Jr., X. Yin, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res., 114, D05112, doi:10.1029/2008JD010989.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and et al. , 2011: The Japanese 55-year reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

  • Fu, C., and L. Dan, 2014: Trends in the different grades of precipitation over South China during 1960–2010 and the possible link with anthropogenic aerosols. Adv. Atmos. Sci., 31, 480491, doi:10.1007/s00376-013-2102-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445, doi:10.1126/science.1132027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1979: On the signal-to-noise problem in atmospheric response studies. Meteorology over the Tropical Oceans, B. D. Shaw, Ed., Royal Meteorological Society, 251–259.

  • Hasselmann, K., 1993: Optimal fingerprints for the detection of time dependent climate change. J. Climate, 6, 19571971, doi:10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. S. Solomon et al., Eds., Cambridge University Press, 996 pp.

  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Cambridge University Press, 582 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jiang, Y., X. Liu, X. Q. Yang, and M. Wang, 2013: A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos. Environ., 70, 5163, doi:10.1016/j.atmosenv.2012.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., Y. Shen, T. Ma, P. Zhai, and S. Fang, 2014: Changes of precipitation intensity spectra in different regions of mainland China during 1961–2006. J. Meteor. Res., 28, 10851098, doi:10.1007/s13351-014-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J., and et al. , 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H.-T. Wu, 2007: Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol., 27, 979988, doi:10.1002/joc.1454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., H.-T. Wu, and K.-M. Kim, 2013: A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys. Res. Lett., 40, 31633169, doi:10.1002/grl.50420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., W.-K. Tao, and C.-H. Jung, 2014: Aerosol effects on instability, circulations, clouds, and precipitation. Adv. Meteor., 2014, 683950, doi:10.1155/2014/683950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, R., S. C. Liu, R. J. Cicerone, C.-J. Shiu, J. Li, J. L. Wang, and Y. H. Zhang, 2015: Trends of extreme precipitation in eastern China and their possible causes. Adv. Atmos. Sci., 32, 10271037, doi:10.1007/s00376-015-5002-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Wang, C. Shiu, H. Chang, C. Hsiao, and S. Liaw, 2002: Reduction in sunshine duration over Taiwan: Causes and implications. Terr. Atmos. Ocean. Sci., 13, 523545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Fu, C. J. Shiu, J. P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi:10.1029/2009GL040218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, A. Dai, and Z. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 69606978, doi:10.1175/JCLI-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, doi:10.1126/science.1075159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, and F. Zwiers, 2008: Human-induced Arctic moistening. Science, 320, 518520, doi:10.1126/science.1153468.

  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, doi:10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., T. C. Johns, J. M. Gregory, and S. F. B. Tett, 1995: Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501504, doi:10.1038/376501a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2012: NCAR command language, 6.0.0 ed. UCAR/NCAR/CISL/VETS, Boulder, CO, doi:10.5065/d6wd3xh5.

    • Crossref
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, doi:10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385, doi:10.1038/nature09762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polson, D., G. C. Hegerl, R. P. Allan, and B. B. Sarojini, 2013: Have greenhouse gases intensified the contrast between wet and dry regions? Geophys. Res. Lett., 40, 47834787, doi:10.1002/grl.50923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polson, D., M. Bollasina, G. C. Hegerl, and L. J. Wilcox, 2014: Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett., 41, 60236029, doi:10.1002/2014GL060811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, W., J. Fu, and Z. Yan, 2007: Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett., 34, L11705, doi:10.1029/2007GL029631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi:10.1029/2008JD011575.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and et al. , 2005: Atmospheric brown clouds: Impact on South Asian climate and hydrologic cycle. Proc. Natl. Acad. Sci. USA, 102, 53265333, doi:10.1073/pnas.0500656102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L., S. Jeffrey, M. Collier, S. Dravitzki, A. Hirst, J. Syktus, and K. Wong, 2012: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 63776404, doi:10.5194/acp-12-6377-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiu, C. J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, doi:10.1029/2012GL052762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, doi:10.1002/2013GL058705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, F., M. L. Roderick, and G. D. Farquhar, 2012: Changes in the variability of global land precipitation. Geophys. Res. Lett., 39, L19402, doi:10.1029/2012GL053369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, doi:10.1175/JCLI4263.1.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, doi:10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, doi:10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., J. Grieser, and C. Schar, 2008: Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett., 35, L17706, doi:10.1029/2008GL034842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K. M., P. D. Jones, P. W. Thorne, and N. P. Gillett, 2010: A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models. Environ. Res. Lett., 5, 025210, doi:10.1088/1748-9326/5/2/025210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Su, and J. H. Jiang, 2013: Regional simulation of aerosol impacts on precipitation during the East Asian summer monsoon. J. Geophys. Res. Atmos., 118, 64546467, doi:10.1002/jgrd.50527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth’s hydrological cycle. Nat. Climate Change, 3, 807810, doi:10.1038/nclimate1932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, J., W. Li, L. Li, and F. Zhang, 2013: “North drying and south wetting” summer precipitation trend over China and its potential linkage with aerosol loading. Atmos. Res., 125–126, 1219, doi:10.1016/j.atmosres.2013.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., K. B. He, and H. Huo, 2012: Cleaning China’s air. Nature, 484, 161162, doi:10.1038/484161a.

  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465, doi:10.1038/nature06025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., H. Wan, F. W. Zwiers, G. C. Hegerl, and S.-K. Min, 2013: Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40, 52525257, doi:10.1002/grl.51010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the 21st century under a low–moderate emissions scenario. J. Climate, 28, 44904512, doi:10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., A. Dai, and J. Wang, 2012: Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Climate, 25, 45494567, doi:10.1175/JCLI-D-11-00557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 237 24
PDF Downloads 201 201 16

Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China

View More View Less
  • 1 Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 Joint Center for Global Change Studies, Beijing, China
  • | 4 Lawrence Berkeley National Laboratory, Berkeley, California
  • | 5 School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom
  • | 6 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • | 7 Met Office Hadley Centre, Exeter, United Kingdom
  • | 8 KlimaCampus, University of Hamburg, Hamburg, Germany
  • | 9 Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions
Restricted access

Abstract

Changes in precipitation characteristics directly affect society through their impacts on drought and floods, hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmosphere and thus the risk of heavy precipitation. Here, daily precipitation records from over 700 Chinese stations from 1956 to 2005 are analyzed. The results show a significant shift from light to heavy precipitation over eastern China. An optimal fingerprinting analysis of simulations from 11 climate models driven by different combinations of historical anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural (volcanic and solar) forcings indicates that anthropogenic forcing on climate, including increases in greenhouse gases (GHGs), has had a detectable contribution to the observed shift toward heavy precipitation. Some evidence is found that anthropogenic aerosols (AAs) partially offset the effect of the GHG forcing, resulting in a weaker shift toward heavy precipitation in simulations that include the AA forcing than in simulations with only the GHG forcing. In addition to the thermodynamic mechanism, strengthened water vapor transport from the adjacent oceans and by midlatitude westerlies, resulting mainly from GHG-induced warming, also favors heavy precipitation over eastern China. Further GHG-induced warming is predicted to lead to an increasing shift toward heavy precipitation, leading to increased urban flooding and posing a significant challenge for mega-cities in China in the coming decades. Future reductions in AA emissions resulting from air pollution controls could exacerbate this tendency toward heavier precipitation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn

Abstract

Changes in precipitation characteristics directly affect society through their impacts on drought and floods, hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmosphere and thus the risk of heavy precipitation. Here, daily precipitation records from over 700 Chinese stations from 1956 to 2005 are analyzed. The results show a significant shift from light to heavy precipitation over eastern China. An optimal fingerprinting analysis of simulations from 11 climate models driven by different combinations of historical anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural (volcanic and solar) forcings indicates that anthropogenic forcing on climate, including increases in greenhouse gases (GHGs), has had a detectable contribution to the observed shift toward heavy precipitation. Some evidence is found that anthropogenic aerosols (AAs) partially offset the effect of the GHG forcing, resulting in a weaker shift toward heavy precipitation in simulations that include the AA forcing than in simulations with only the GHG forcing. In addition to the thermodynamic mechanism, strengthened water vapor transport from the adjacent oceans and by midlatitude westerlies, resulting mainly from GHG-induced warming, also favors heavy precipitation over eastern China. Further GHG-induced warming is predicted to lead to an increasing shift toward heavy precipitation, leading to increased urban flooding and posing a significant challenge for mega-cities in China in the coming decades. Future reductions in AA emissions resulting from air pollution controls could exacerbate this tendency toward heavier precipitation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn
Save