• Adam, O., , T. Schneider, , and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, doi:10.1175/JCLI-D-14-00140.1.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., , S. C. Sherwood, , J. R. Norris, , and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, doi:10.1038/nature11097.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., , J. R. Norris, , and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width. Nat. Geosci., 7, 270274, doi:10.1038/ngeo2091.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., , and A. J. Hajj, 2013: Monitoring the width of the tropical belt with GPS radio occultation measurements. Geophys. Res. Lett., 40, 62366241, doi:10.1002/2013GL058203.

    • Search Google Scholar
    • Export Citation
  • Archer, C. L., , and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Barnes, E. A., , and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and S. Hagemann, 2004: Sensitivity of the ERA40 reanalysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus, 56A, 456471, doi:10.1111/j.1600-0870.2004.00079.x.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Recent widening of the tropical belt from global tropopause statistics: Sensitivities. J. Geophys. Res., 115, D23109, doi:10.1029/2010JD014664.

    • Search Google Scholar
    • Export Citation
  • Birner, T., , S. M. Davis, , and D. J. Seidel, 2014: The changing width of Earth’s tropical belt. Phys. Today, 67, 3844, doi:10.1063/PT.3.2620.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., , and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, doi:10.1038/ngeo248.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and et al. , 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. NASA/TM-2015-104606, 145 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/tm/docs/Bosilovich803.pdf.]

  • Chen, G., , and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, S., , K. Wei, , W. Chen, , and L. Song, 2014: Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res. Atmos., 119, 78157832, doi:10.1002/2014JD021540.

    • Search Google Scholar
    • Export Citation
  • Choi, J., , S.-W. Son, , J. Lu, , and S.-K. Min, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 41, 25902597, doi:10.1002/2014GL059426.

    • Search Google Scholar
    • Export Citation
  • Davis, N. A., , and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt. J. Geophys. Res. Atmos., 118, 77737787, doi:10.1002/jgrd.50610.

    • Search Google Scholar
    • Export Citation
  • Davis, N. A., , and T. Birner, 2016: Climate model biases in the width of the tropical belt. J. Climate, 29, 19351954, doi:10.1175/JCLI-D-15-0336.1.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., , and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, doi:10.1175/JCLI-D-11-00127.1.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., , T. Birner, , and D. Seidel, 2016: How do climate variations affect the width of the tropics? Eos, Trans. Amer. Geophys. Union, 97, doi:10.1029/2016EO049309.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 10 May 2016, doi:10.5065/D6CR5RD9.

  • Eyring, V., and et al. , 2010: SPARC CCMVal report on the evaluation of chemistry-climate models. SPARC Rep. 5, WCRP-30/2010, WMO/TD-40, 426 pp.

  • Feldl, N., , and S. Bordoni, 2016: Characterizing the Hadley circulation response through regional climate feedbacks. J. Climate, 29, 613622, doi:10.1175/JCLI-D-15-0424.1.

    • Search Google Scholar
    • Export Citation
  • Feng, S., , and Q. Fu, 2013: Expansion of global drylands under a warmer climate. Atmos. Chem. Phys., 13, 10 08110 094, doi:10.5194/acp-13-10081-2013.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , J. Lu, , and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and P. Lin, 2011: Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures. J. Climate, 24, 55975603, doi:10.1175/JCLI-D-11-00027.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , D. W. Waugh, , and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 42, 10 82410 831, doi:10.1002/2015GL066942.

    • Search Google Scholar
    • Export Citation
  • Grassi, B., , G. Redaelli, , P. O. Canziani, , and G. Visconti, 2012: Effect of the PDO phase on the tropical belt width. J. Climate, 25, 32823290, doi:10.1175/JCLI-D-11-00244.1.

    • Search Google Scholar
    • Export Citation
  • Heaviside, C., , and A. Czaja, 2013: Deconstructing the Hadley cell heat transport. Quart. J. Roy. Meteor. Soc., 139, 21812189, doi:10.1002/qj.2085.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Proc. 2000 Program in Geophysical Fluid Dynamics, Woods Hole, MA, Woods Hole Oceanographic Institute, 30–36.

  • Hu, Y., , and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , C. Zhou, , and J. Liu, 2011: Observational evidence for the poleward expansion of the Hadley circulation. Adv. Atmos. Sci., 28, 3344, doi:10.1007/s00376-010-0032-1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , L. Tao, , and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, doi:10.1007/s00376-012-2187-4.

    • Search Google Scholar
    • Export Citation
  • JMA, 2015: JRA-55: Japanese 55-year Reanalysis, monthly means and variances. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 10 May 2016, doi:10.5065/D60G3H5B.

  • Johanson, C. M., , and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725, doi:10.1175/2008JCLI2620.1.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57, 30503057, doi:10.1175/1520-0469(2000)057<3050:TSSOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , and L. M. Polvani, 2011: The interannual relationship between the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563568, doi:10.1175/2010JCLI4077.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , C. Deser, , and L. M. Polvani, 2013: Uncertainty in climate change projections of the Hadley circulation: The role of internal variability. J. Climate, 26, 75417554, doi:10.1175/JCLI-D-12-00788.1.

    • Search Google Scholar
    • Export Citation
  • Keith, D. W., 1995: Meridional energy transport: Uncertainty in zonal means. Tellus, 47A, 3044, doi:10.1034/j.1600-0870.1995.00002.x.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , G. K. Vallis, , S. M. Dean, , and J. Renwick, 2011: Can an increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780, doi:10.1175/2010JCLI3738.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., , and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 28592871, doi:10.1175/1520-0469(2001)058<2859:HCDIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , I. M. Held, , and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 2005: A cautionary note on the use of error bars. J. Climate, 18, 36993703, doi:10.1175/JCLI3499.1.

  • Lindzen, R. S., , and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , C. Deser, , and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi:10.1029/2008GL036076.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , and H. Nguyen, 2015: Regional characteristics of tropical expansion and the role of climate variability. J. Geophys. Res. Atmos., 120, 68096824, doi:10.1002/2015JD023130.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , H. Nguyen, , and B. Timbal, 2012: An observational analysis of Southern Hemisphere tropical expansion. J. Geophys. Res., 117, D17112, doi:10.1029/2011JD017033.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , B. Timbal, , and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, doi:10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., , G. A. Schmidt, , and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111, D18101, doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • NASA, 2015: NASA Modern-Era Retrospective Analysis for Research and Applications, version 2. GES DISC, accessed 10 May 2016. [Available online at https://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl.]

  • Nguyen, H., , A. Evans, , C. Lucas, , I. Smith, , and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability and expansion. J. Climate, 26, 33573376, doi:10.1175/JCLI-D-12-00224.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, H., , C. Lucas, , A. Evans, , B. Timbal, , and L. Hanson, 2015: Expansion of the Southern Hemisphere Hadley cell in response to greenhouse gas forcing. J. Climate, 28, 80678077, doi:10.1175/JCLI-D-15-0139.1.

    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., , M. P. Hoerling, , J. Perlwitz, , H. F. Diaz, , and T. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 19992013, doi:10.1175/JCLI-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010a: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010b: NCEP Climate Forecast System Reanalysis (CFSR) monthly products, January 1979 to December 2010. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 10 May 2016, doi:10.5065/D6DN438J.

  • Santer, B. D., and et al. , 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. Int. J. Climatol., 28, 17031722, doi:10.1002/joc.1756.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., , and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi:10.1029/2012GL052910.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111, D21101, doi:10.1029/2006JD007363.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Q. Fu, , W. J. Randel, , and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 17241746, doi:10.1175/JAS-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., , and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, doi:10.1175/2010JAS3608.1.

    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., , and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi:10.1029/2011JD016677.

    • Search Google Scholar
    • Export Citation
  • Staten, P. W., , and T. Reichler, 2014: On the ratio between shifts in the eddy-driven jet and the Hadley cell edge. Climate Dyn., 42, 12291242, doi:10.1007/s00382-013-1905-7.

    • Search Google Scholar
    • Export Citation
  • Staten, P. W., , K. M. Grise, , and S. M. Davis, 2016: The width of the tropics: Climate variations and their impacts. SPARC Newsletter, No. 46, 26–31. [Available online at http://www.sparc-climate.org/fileadmin/customer/6_Publications/Newsletter_PDF/SPARCnewsletter_Jan2016_Web.pdf.]

  • Swart, N. C., , and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, doi:10.1029/2012GL052810.

    • Search Google Scholar
    • Export Citation
  • Tao, L., , Y. Hu, , and J. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 33373350, doi:10.1007/s00382-015-2772-1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869882, doi:10.1175/1520-0469(1997)054<0869:GTOTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16, 37063722, doi:10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , Z. Shi, , J. R. Lanzante, , and A. H. Oort, 1999: The Hadley circulation: Assessing NCEP/NCAR reanalysis and sparse in-situ estimates. Climate Dyn., 15, 719735, doi:10.1007/s003820050312.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., , B. J. Hoskins, , and K. P. Shine, 2012: A global blended tropopause based on ERA data. Part II: Trends and tropical broadening. Quart. J. Roy. Meteor. Soc., 138, 576584, doi:10.1002/qj.910.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , and T. A. Shaw, 2016: The impact of the Asian summer monsoon circulation on the tropopause. J. Climate, 29, 86898701, doi:10.1175/JCLI-D-16-0204.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., , K.-M. Xu, , Y. C. Sud, , and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res., 116, D09101, doi:10.1029/2009JG001234.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 137 22
PDF Downloads 114 114 20

On the Discrepancies in Tropical Belt Expansion between Reanalyses and Climate Models and among Tropical Belt Width Metrics

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The arid subtropics are situated at the edges of the tropical belt, where subsidence in the Hadley cells suppresses precipitation. Any meridional shift in these edge latitudes could have significant impacts on surface climate. Recent studies have investigated past and future changes in the tropical belt width and have found discrepancies in the rates of expansion estimated with different metrics and between climate models and reanalyses. Here, CMIP5 simulations and four modern reanalyses are analyzed using an ensemble of objective tropical belt width metrics to reexamine if such inconsistencies exist. The authors do not find sufficient evidence to demonstrate this discrepancy between models and reanalyses, as reanalysis trends in the tropical belt width fall within the range of model trends for any given metric. Furthermore, only metrics based on the Hadley cells are found to exhibit robust historical and future expansion. Metrics based on the subtropical jet and the tropopause show no robust response. This differentiation may be due to the strong correlation, on all time scales, between the Hadley cell edge latitudes and the latitudes of the eddy-driven jets, which consistently shift poleward in response to radiative forcings. In contrast, the subtropical jet and tropopause metrics appear to be decoupled from the Hadley cells and the eddy-driven jets and essentially measure a different tropical belt. The tropical belt width metrics are inconsistently correlated with surface climate indices based on precipitation and surface evaporation. This may make assessing the surface impacts of observed and future tropical expansion challenging.

Corresponding author e-mail: Nicholas Davis, nadavis@atmos.colostate.edu

Abstract

The arid subtropics are situated at the edges of the tropical belt, where subsidence in the Hadley cells suppresses precipitation. Any meridional shift in these edge latitudes could have significant impacts on surface climate. Recent studies have investigated past and future changes in the tropical belt width and have found discrepancies in the rates of expansion estimated with different metrics and between climate models and reanalyses. Here, CMIP5 simulations and four modern reanalyses are analyzed using an ensemble of objective tropical belt width metrics to reexamine if such inconsistencies exist. The authors do not find sufficient evidence to demonstrate this discrepancy between models and reanalyses, as reanalysis trends in the tropical belt width fall within the range of model trends for any given metric. Furthermore, only metrics based on the Hadley cells are found to exhibit robust historical and future expansion. Metrics based on the subtropical jet and the tropopause show no robust response. This differentiation may be due to the strong correlation, on all time scales, between the Hadley cell edge latitudes and the latitudes of the eddy-driven jets, which consistently shift poleward in response to radiative forcings. In contrast, the subtropical jet and tropopause metrics appear to be decoupled from the Hadley cells and the eddy-driven jets and essentially measure a different tropical belt. The tropical belt width metrics are inconsistently correlated with surface climate indices based on precipitation and surface evaporation. This may make assessing the surface impacts of observed and future tropical expansion challenging.

Corresponding author e-mail: Nicholas Davis, nadavis@atmos.colostate.edu
Save