• Chang, Y.-S., C.-W. Cho, Y.-H. Youn, and J.-W. Seo, 2007: Validation of ocean general circulation model (FMS-MOM4) in relation with climatological and Argo data. J. Korean Earth Sci. Soc., 28, 545555, doi:10.5467/JKESS.2007.28.5.545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and et al. , 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, doi:10.1038/ngeo2399.

  • Chiodi, A. M., and D. E. Harrison, 2014: Comment on Qian et al. 2008: La Niña and El Niño composites of atmospheric CO2 change. Tellus, 66B, 20428, doi:10.3402/tellusb.v66.20428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Climate, 28, 776792, doi:10.1175/JCLI-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2017: Simulating ENSO SSTA from TAO/TRITON winds: The impacts of 20 years of buoy observations in the waveguide and comparison with reanalysis products. J. Climate, 30, 10411059, doi:10.1175/JCLI-D-15-0865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian oscillation and westerly wind events. J. Climate, 27, 36193642, doi:10.1175/JCLI-D-13-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ERA-I, 2011: The ERA-Interim reanalysis. European Centre for Medium-Range Weather Forecasts (ECMWF). Accessed 15 February 2016. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-daily.]

  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, doi:10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, NOAA/Geophysical Fluid Dynamics Laboratory, 295 pp.

  • Guerney, K. R., K. Castillo, B. Li, and Z. Zhang, 2012: A positive carbon feedback to ENSO and volcanic aerosols in the tropical terrestrial biosphere. Global Biogeochem. Cycles, 26, GB1029, doi:10.1029/2011GB004129.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1989: On climatological monthly mean wind stress and wind stress curl fields over the world ocean. J. Climate, 2, 5770, doi:10.1175/1520-0442(1989)002<0057:OCMMWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1991: Equatorial sea surface temperature sensitivity to net surface heat flux: Some ocean circulation model results. J. Climate, 4, 539549, doi:10.1175/1520-0442(1991)004<0539:ESSTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and D. S. Luther, 1990: Surface winds from tropical Pacific islands—Climatological statistics. J. Climate, 3, 251271, doi:10.1175/1520-0442(1990)003<0251:SWFTPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. P. Craig, 1993: Ocean model studies of upper-ocean variability at 0°, 160°W during the 1982–1983 ENSO: Local and remotely forced response. J. Phys. Oceanogr., 23, 425451, doi:10.1175/1520-0485(1993)023<0425:OMSOUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. M. Chiodi, 2009: Pre- and post-1997/98 westerly wind events and equatorial Pacific cold tongue warming. J. Climate, 22, 568581, doi:10.1175/2008JCLI2270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., W. S. Kessler, and B. S. Giese, 1989: Ocean circulation model hindcasts of the 1982-83 El Niño: Thermal variability along the ship-of-opportunity tracks. J. Phys. Oceanogr., 19, 397418, doi:10.1175/1520-0485(1989)019<0397:OCMHOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., B. S. Giese, and E. S. Sarachik, 1990: Mechanisms of SST change in the equatorial waveguide during the 1982–83 ENSO. J. Climate, 3, 173188, doi:10.1175/1520-0442(1990)003<0173:MOSCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., A. Chiodi, and G. Vecchi, 2009: Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific. J. Mar. Res., 67, 701729, doi:10.1357/002224009792006179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, doi:10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett., 43, 65036510, doi:10.1002/2016GL069204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., B. Liu, J. Li, and J. Mao, 2015: A comparative study on the dominant factors responsible for the weaker-than-expected El Niño event in 2014. Adv. Atmos. Sci., 32, 13811390, doi:10.1007/s00376-015-4269-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2015: Paying hide and seek with El Niño. Nat. Climate Change, 5, 791795, doi:10.1038/nclimate2775.

  • McPhaden, M. J., and et al. , 2010: The global tropical moored buoy array. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society Conf., Vol. 2, Venice, Italy, ESA Publication WPP-306. [Available online at www.aoml.noaa.gov/phod/docs/McPhaden_TheGlobalTropical.pdf.]

  • Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 64766483, doi:10.1002/2014GL061186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., J. Su, R. Zhang, and X. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys. Res. Lett., 42, 67626770, doi:10.1002/2015GL064899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NBSW, 2006: NOAA Blended Sea Winds. NOAA/NESDIS/National Climatic Data Center. Accessed 9 March 2016. [Available online at https://www.ncdc.noaa.gov/oa/rsad/air-sea/seawinds.html.]

  • NCEP1, 1996: NCEP/NCAR Reanalysis. NOAA/OAR/ESRL PSD. Accessed 15 September 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.]

  • NCEP2, 2002: NCEP–DOE Reanalysis 2. NOAA/OAR/ESRL PSD. Accessed 1 March 2016. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.]

  • NOAA OISST, 2002: NOAA Optimum Interpolation Sea Surface Temperature version 2. NOAA/OAR/ESRL PSD. Accessed 15 September 2015. [Available online at http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.]

  • Philander, S. G. H., and A. D. Siegel, 1985: Simulation of El Niño of 1982–83. Coupled Ocean–Atmosphere Models, J. Nihoul, Ed., Elsevier, 517–541.

    • Crossref
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, doi:10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 549566, doi:10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., B. Xiang, B. Wang, and T. Li, 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 90589064, doi:10.1002/2014GL062380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TAO/TRITON, 2000: Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network. NOAA/PMEL TAO project office. Accessed 15 September 2015. [Available online at http://www.pmel.noaa.gov/tao/data_deliv/frames/main.html.]

  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 18141830, doi:10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., J. J. Bates, and R. W. Reynolds, 2006: Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett., 33, L17714, doi:10.1029/2006GL027086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Kumar, B. Huang, M. A. Balmaseda, Z.-Z. Hu, L. Marx, and J. L. Kinter III, 2016: The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci. Rep., 6, 19677, doi:10.1038/srep19677.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 7
PDF Downloads 51 51 5

Observed El Niño SSTA Development and the Effects of Easterly and Westerly Wind Events in 2014/15

View More View Less
  • 1 Joint Institute for the Study of the Ocean and Atmosphere, University of Washington, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The unexpected halt of warm sea surface temperature anomaly (SSTA) growth in 2014 and development of a major El Niño in 2015 has drawn attention to our ability to understand and predict El Niño development. Wind stress–forced ocean model studies have satisfactorily reproduced observed equatorial Pacific SSTAs during periods when data return from the TAO/TRITON buoy network was high. Unfortunately, TAO/TRITON data return in 2014 was poor. To study 2014 SSTA development, the observed wind gaps must be filled. The hypothesis that subseasonal wind events provided the dominant driver of observed waveguide SSTA development in 2014 and 2015 is used along with the available buoy winds to construct an oceanic waveguide-wide surface stress field of westerly wind events (WWEs) and easterly wind surges (EWSs). It is found that the observed Niño-3.4 SSTA development in 2014 and 2015 can thereby be reproduced satisfactorily. Previous 2014 studies used other wind fields and reached differing conclusions about the importance of WWEs and EWSs. Experiment results herein help explain these inconsistencies, and clarify the relative importance of WWEs and EWSs. It is found that the springtime surplus of WWEs and summertime balance between WWEs and EWSs (yielding small net wind stress anomaly) accounts for the early development and midyear reversal of El Niño–like SSTA development in 2014. A strong abundance of WWEs in 2015 accounts for the rapid SSTA warming observed then. Accurately forecasting equatorial Pacific SSTA in years like 2014 and 2015 may require learning to predict WWE and EWS occurrence characteristics.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Andrew Chiodi, andy.chiodi@noaa.gov

Abstract

The unexpected halt of warm sea surface temperature anomaly (SSTA) growth in 2014 and development of a major El Niño in 2015 has drawn attention to our ability to understand and predict El Niño development. Wind stress–forced ocean model studies have satisfactorily reproduced observed equatorial Pacific SSTAs during periods when data return from the TAO/TRITON buoy network was high. Unfortunately, TAO/TRITON data return in 2014 was poor. To study 2014 SSTA development, the observed wind gaps must be filled. The hypothesis that subseasonal wind events provided the dominant driver of observed waveguide SSTA development in 2014 and 2015 is used along with the available buoy winds to construct an oceanic waveguide-wide surface stress field of westerly wind events (WWEs) and easterly wind surges (EWSs). It is found that the observed Niño-3.4 SSTA development in 2014 and 2015 can thereby be reproduced satisfactorily. Previous 2014 studies used other wind fields and reached differing conclusions about the importance of WWEs and EWSs. Experiment results herein help explain these inconsistencies, and clarify the relative importance of WWEs and EWSs. It is found that the springtime surplus of WWEs and summertime balance between WWEs and EWSs (yielding small net wind stress anomaly) accounts for the early development and midyear reversal of El Niño–like SSTA development in 2014. A strong abundance of WWEs in 2015 accounts for the rapid SSTA warming observed then. Accurately forecasting equatorial Pacific SSTA in years like 2014 and 2015 may require learning to predict WWE and EWS occurrence characteristics.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Andrew Chiodi, andy.chiodi@noaa.gov
Save