• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., , and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, doi:10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baxter, S., , and S. Nigam, 2015: Key role of the North Pacific Oscillation–west Pacific pattern in generating the extreme 2013/14 North American winter. J. Climate, 28, 81098117, doi:10.1175/JCLI-D-14-00726.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , and G. Branstator, 2007: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: Probability density functions. J. Atmos. Sci., 64, 117136, doi:10.1175/JAS3822.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, doi:10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1990: Low-frequency patterns induced by stationary waves. J. Climate, 47, 629649, doi:10.1175/1520-0469(1990)047<0629:LFPIBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., , and F. Selten, 2009: “Modes of variability” and climate change. J. Climate, 22, 26392658, doi:10.1175/2008JCLI2517.1.

    • Search Google Scholar
    • Export Citation
  • Corti, S., , F. Molteni, , and T. N. Palmer, 1999: Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature, 398, 799802, doi:10.1038/19745.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Climate, 62, 32503267, doi:10.1175/JAS3536.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, doi:10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., , M. Ting, , and R. Seager, 2016: El Niño impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, doi:10.1088/1748-9326/11/5/054021.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1981: A diagnostic study of recurrent meteorological anomalies appearing in a 15-year simulation with a GFDL general circulation model. Mon. Wea. Rev., 109, 22872311, doi:10.1175/1520-0493(1981)109<2287:ADSORM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, M., , C. Hong, , and H. Hsu, 2015: Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 16121618, doi:10.1002/2014GL062956.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., , and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, doi:10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., , and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, doi:10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2014: Record-breaking winters and global climate change. Science, 344, 803804, doi:10.1126/science.1255147.

  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and N. Henderson, 2016: Tropical ocean forcing of the persistent North American west coast ridge of winter 2013/14. J. Climate, 29, 80278049, doi:10.1175/JCLI-D-16-0145.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , M. Hoerling, , S. Schubert, , H. Wang, , B. Lyon, , A. Kumar, , J. Nakamura, , and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, doi:10.1175/JCLI-D-14-00860.1.

    • Search Google Scholar
    • Export Citation
  • Swain, D., and et al. , 2014: The extraordinary California drought of 2013/2014: Character, context, and the role of climate change [in “Explaining Extreme Events of 2013”]. Bull. Amer. Meteor. Soc., 95 (9), S3S6.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., , R. Haarsma, , H. De Vries, , and M. R. Allen, 2015: Cold extremes in North America vs. mild weather in Europe: The winter of 2013–14 in the context of a warming world. Bull. Amer. Meteor. Soc., 96, 707714, doi:10.1175/BAMS-D-14-00036.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., , L. Hipps, , R. R. Gillies, , and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, doi:10.1002/2014GL059748.

    • Search Google Scholar
    • Export Citation
  • Watson, P. A., , A. Weisheimer, , J. R. Knight, , and T. N. Palmer, 2016: The role of the tropical west Pacific in the extreme Northern Hemisphere winter of 2013/2014. J. Geophys. Res. Atmos., 121, 16981714, doi:10.1002/2015JD024048.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 1983: Description of NCAR Community Climate Model (CCM0B). NCAR Tech. Note NCAR/TN-210+STR, 88 pp., doi:10.5065/D600002T.

  • Yoon, J. H., , S.-Y. Wang, , R. R. Gillies, , B. Kravitz, , L. Hipps, , and P. J. Rasch, 2015: Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun., 6, 8657, doi:10.1038/ncomms9657.

    • Search Google Scholar
    • Export Citation
  • Yu, B., , and X. Zhang, 2015: A physical analysis of the severe 2013/2014 cold winter in North America. J. Geophys. Res. Atmos., 120, 10 14910 165, doi:10.1002/2015JD023116.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 277 50
PDF Downloads 151 151 30

Causes of Extreme Ridges That Induce California Droughts

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

California droughts are often caused by high-amplitude and persistent ridges near and off the west coast of North America without apparent connections with ENSO. Here with a hierarchy of climate models, it is demonstrated that extreme ridges in this region are associated with a continuum of zonal wavenumber-5 circumglobal teleconnection patterns that originate from midlatitude atmospheric internal dynamics. Although tropical diabatic heating anomalies are not essential to the formation and maintenance of these wave patterns, certain persistent heating anomalies may double the probability of ridges with amplitudes in the 90th percentile occurring on interannual time scales. Those heating anomalies can be caused by either natural variability or possibly by climate change, and they do not necessarily depend on ENSO. The extreme ridges that occurred during the 2013/14 and 2014/15 winters could be examples of ridges produced by heating anomalies that are not associated with ENSO. This mechanism could provide a source of subseasonal-to-interannual predictability beyond the predictability provided by ENSO.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Haiyan Teng, hteng@ucar.edu

Abstract

California droughts are often caused by high-amplitude and persistent ridges near and off the west coast of North America without apparent connections with ENSO. Here with a hierarchy of climate models, it is demonstrated that extreme ridges in this region are associated with a continuum of zonal wavenumber-5 circumglobal teleconnection patterns that originate from midlatitude atmospheric internal dynamics. Although tropical diabatic heating anomalies are not essential to the formation and maintenance of these wave patterns, certain persistent heating anomalies may double the probability of ridges with amplitudes in the 90th percentile occurring on interannual time scales. Those heating anomalies can be caused by either natural variability or possibly by climate change, and they do not necessarily depend on ENSO. The extreme ridges that occurred during the 2013/14 and 2014/15 winters could be examples of ridges produced by heating anomalies that are not associated with ENSO. This mechanism could provide a source of subseasonal-to-interannual predictability beyond the predictability provided by ENSO.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Haiyan Teng, hteng@ucar.edu
Save