Assessing the Climate Impacts of the Observed Atlantic Multidecadal Variability Using the GFDL CM2.1 and NCAR CESM1 Global Coupled Models

Yohan Ruprich-Robert Atmosphere and Ocean Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Yohan Ruprich-Robert in
Current site
Google Scholar
PubMed
Close
,
Rym Msadek NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and CECI UMR 5318, CNRS/CERFACS, Toulouse, France

Search for other papers by Rym Msadek in
Current site
Google Scholar
PubMed
Close
,
Frederic Castruccio Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Frederic Castruccio in
Current site
Google Scholar
PubMed
Close
,
Stephen Yeager Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stephen Yeager in
Current site
Google Scholar
PubMed
Close
,
Tom Delworth NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Tom Delworth in
Current site
Google Scholar
PubMed
Close
, and
Gokhan Danabasoglu Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0127.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Yohan Ruprich-Robert, yohan.ruprich-robert@noaa.gov

Abstract

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0127.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Yohan Ruprich-Robert, yohan.ruprich-robert@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 1.28 MB)
Save
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2011: Decadal potential predictability of twenty-first century climate. Climate Dyn., 36, 11191133, doi:10.1007/s00382-010-0747-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, doi:10.5194/gmd-2016-78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate, 23, 62926311, doi:10.1175/2010JCLI3678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, and R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 25402555, doi:10.1175/2010JCLI4065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2012: Predictability of a stepwise shift in Pacific climate during the late 1990s in hindcast experiments using MIROC. J. Meteor. Soc. Japan, 90A, 121, doi:10.2151/jmsj.2012-A01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2015: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi:10.1038/ncomms7869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., M. K. Dubey, G. Lesins, J. Li, and N. Hengartner, 2014: Imprint of the Atlantic multi-decadal oscillation and Pacific decadal oscillation on southwestern US climate: Past, present, and future. Climate Dyn., 43, 119129, doi:10.1007/s00382-013-1933-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Radel, and B. Stevens, 2015: The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, doi:10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., J. Von Hardenberg, and S. Corti, 2015: Tropical origin for the impacts of the Atlantic multidecadal variability on the Euro-Atlantic climate. Environ. Res. Lett., 10, 094010, doi:10.1088/1748-9326/10/9/094010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2002: Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys. Res. Lett., 29, 1728, doi:10.1029/2002GL015229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2007: Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Climate, 20, 49204939, doi:10.1175/JCLI4284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, doi:10.1029/2006GL025766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., D. M. Smith, and R. Eade, 2011: Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys. Res. Lett., 38, L14701, doi:10.1029/2011GL047949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebbesmeyer, C. C., D. R. Cayan, D. R. McLain, F. H. Nichols, D. H. Peterson, and K. T. Redmond, 1991: 1976 step in the Pacific climate: Forty environmental changes between 1968-1975 and 1977-1984. Proc. Seventh Annual Pacific Climate Workshop, April 1990, Pacific Grove, CA, California Department of Water Resources, 115–126.

  • Enfield, D. B., A. M. Mestas‐Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077, doi:10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., W. Colman, D. P. Rowell, and M. K. Davey, 2001: Predictability of northeast Brazil rainfall and real-time forecast skill, 1987–98. J. Climate, 14, 19371958, doi:10.1175/1520-0442(2001)014<1937:PONBRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., A. von der Heydt, and H. A. Dijkstra, 2010: North Atlantic multidecadal climate variability: An investigation of dominant time scales and processes. J. Climate, 23, 36263638, doi:10.1175/2010JCLI3471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, doi:10.1175/JCLI-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2012: Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Climate Dyn., 39, 3757, doi:10.1007/s00382-011-1109-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 13961416, doi:10.1175/JCLI-D-14-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. T., L. J. Graumlich, J. L. Betancourt, and G. T. Pederson, 2004: A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 A.D. Geophys. Res. Lett., 31, 25, doi:10.1029/2004GL019932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic multi-decadal ocean variability. Science, 334, 655660, doi:10.1126/science.1205683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 31033117, doi:10.1007/s00382-015-2527-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103145, doi:10.1016/S0079-6611(00)00033-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, J. M. Gregory, and D. A. Stainforth, 2015: Irreducible uncertainty in near-term climate projections. Climate Dyn., 46, 38073819, doi:10.1007/s00382-015-2806-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 10411058, doi:10.1007/s00382-009-0571-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and J. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, B. Gan, and W. Cai, 2016: Global warming attenuates the tropical Atlantic-Pacific teleconnection. Sci. Rep., 6, 20078, doi:10.1038/srep20078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, doi:10.1126/science.288.5473.1984.

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., M.-S. Seidenkrantz, B. H. Jacobsen, and A. Kuijpers, 2011: Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat. Commun., 2, 178, doi:10.1038/ncomms1186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: Implications for projections. J. Climate, 28, 2035, doi:10.1175/JCLI-D-13-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2015: Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Climate Dyn., 46, 22692285, doi:10.1007/s00382-015-2701-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., I. S. Kang, R. Farneti, and L. Feudale, 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, doi:10.1029/2010GL046248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and Coauthors, 2015: Atlantic forcing of Pacific decadal variability. Climate Dyn., 46, 23372351, doi:10.1007/s00382-015-2705-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628, doi:10.1175/2010JCLI3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284, doi:10.1175/2008JCLI2303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. P. Schurer, G. C. Hegerl, C. Deser, and T. L. Frölicher, 2016: The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys. Res. Lett., 43, 28512858, doi:10.1002/2016GL067935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2015: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, doi:10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, and S. K. Miller, 2014: On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett., 41, 32113219, doi:10.1002/2014GL059233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marini, C., and C. Frankignoul, 2014: An attempt to deconstruct the Atlantic multidecadal oscillation. Climate Dyn., 43, 607625, doi:10.1007/s00382-013-1852-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Thorncroft, 2014: The impact of the AMO on the West African monsoon annual cycle. Quart. J. Roy. Meteor. Soc., 140, 3146, doi:10.1002/qj.2107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., C. Thorncroft, and B. B. B. Booth, 2014: The multidecadal Atlantic SST–Sahel rainfall teleconnection in CMIP5 simulations. J. Climate, 27, 784806, doi:10.1175/JCLI-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martín-Rey, M., B. Rodríguez-Fonseca, I. Polo, and F. Kucharski, 2014: On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 31633178, doi:10.1007/s00382-014-2305-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, doi:10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medhaug, I., and T. Furevik, 2011: North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface temperature and ocean overturning circulation. Ocean Sci., 8, 389404, doi:10.5194/os-7-389-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683686, doi:10.1029/97GL00504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855858, doi:10.1029/1999GL900119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohino, E., S. Janicot, and J. Bader, 2011: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., 37, 419440, doi:10.1007/s00382-010-0867-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Msadek, R., and Coauthors, 2014: Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J. Climate, 27, 64726496, doi:10.1175/JCLI-D-13-00476.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Okumura, Y. M., C. Deser, A. Hu, A. Timmermann, and S.-P. Xie, 2009: North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways. J. Climate, 22, 14241445, doi:10.1175/2008JCLI2511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omrani, N. E., N. S. Keenlyside, J. Bader, and E. Manzini, 2014: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn., 42, 649663, doi:10.1007/s00382-013-1860-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, P., E. Guilyardi, D. Swingedouw, J. Mignot, and S. Nguyen, 2017: Reconstructing extreme AMOC events through nudging of the ocean surface: A perfect model approach. Climate Dyn., doi:10.1007/s00382-017-3521-4, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, doi:10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., S. Rodionov, S. Minobe, and N. Bond, 2008: North Pacific regime shifts: Definitions, issues and recent transitions. Prog. Oceanogr., 77, 92102, doi:10.1016/j.pocean.2008.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi:10.1088/1748-9326/9/3/034018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2015: Wintertime atmospheric response to Atlantic multidecadal variability: Dependence on stratospheric representation and ocean–atmosphere coupling. Climate Dyn., 47, 10291047, doi:10.1007/s00382-015-2887-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 44634472, doi:10.1175/3209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polo, I., M. Martin-Rey, B. Rodriguez-Fonseca, F. Kucharski, and C. R. Mechoso, 2015: Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dyn., 44, 115131, doi:10.1007/s00382-014-2354-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S. P. Xie, S. K. Behera, T. Doi, and Y. Masumoto, 2014: Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Climate Dyn., 42, 171188, doi:10.1007/s00382-012-1624-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, doi:10.1175/JCLI-D-11-00443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, doi:10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 21032116, doi:10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., and C. Cassou, 2015: Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model. Climate Dyn., 44, 229253, doi:10.1007/s00382-014-2176-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009jcli3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, W. Baethgen, A. Robertson, Y. Kushnir, J. Nakamura, and S. Jurburg, 2010a: Tropical oceanic causes of interannual to multidecadal precipitation variability in southeast South America over the past century. J. Climate, 23, 55175539, doi:10.1175/2010JCLI3578.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010b: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, doi:10.1002/qj.588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, D., and D. J. Vimont, 2012: Extratropical forcing of tropical Atlantic variability during boreal summer and fall. J. Climate, 25, 20562076, doi:10.1175/JCLI-D-11-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R., and P.-P. Mathieu, 2002: Response of the atmosphere–ocean mixed-layer system to anomalous ocean heat-flux convergence. Quart. J. Roy. Meteor. Soc., 128, 12591275, doi:10.1256/003590002320373283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R., and D. L. R. Hodson, 2005: North Atlantic forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, doi:10.1175/JCLI4038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R., and B. Dong, 2012: Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci., 5, 788792, doi:10.1038/ngeo1595.

  • Swingedouw, D., J. Mignot, S. Labetoulle, E. Guilyardi, and G. Madec, 2013: Initialisation and predictability of the AMOC over the last 50 years in a climate model. Climate Dyn., 40, 23812399, doi:10.1007/s00382-012-1516-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., D. Chen, D. Yang, and T. Li, 2013: Methods of estimating uncertainty of climate prediction and climate change projection. Climate Change: Realities, Impacts over Ice Cap, Sea Level and Risks, B. R. Singh, Ed., InTech, 397–420, doi:10.5772/54810.

    • Crossref
    • Export Citation
  • Terray, L., 2012: Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett., 39, L19712, doi:10.1029/2012GL053046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, doi:10.1175/JCLI4283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, doi:10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, and C. Li, 2014: North Atlantic multidecadal SST oscillation: External forcing versus internal variability. J. Mar. Syst., 133, 2738, doi:10.1016/j.jmarsys.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97jc01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S.-K. Lee, and D. B. Enfield, 2008: Climate response to anomalously large and small Atlantic warm pools during the summer. J. Climate, 21, 24372450, doi:10.1175/2007JCLI2029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Dong, A. T. Evan, G. R. Foltz, and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, doi:10.1175/JCLI-D-11-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N. C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., F. He, and Z. Liu, 2005: Coupled ocean-atmosphere response to north tropical Atlantic SST: Tropical Atlantic dipole and ENSO. Geophys. Res. Lett., 32, L21712, doi:10.1029/2005GL024222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunderlich, F., and D. M. Mitchell, 2016: Uncertainty and detectability of climate surface response to large volcanic eruptions. Atmos. Chem. Phys., 17, 485499, doi:10.5194/acp-2016-173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, A., and J. B. Palter, 2016: The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature. Nat. Commun., 7, 10930, doi:10.1038/ncomms10930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661, doi:10.1175/JCLI-D-12-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, doi:10.1175/JCLI-D-11-00595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, T., L. Oreopoulos, M. Zelinka, H. Yu, J. R. Norris, M. Chin, S. Platnick, and K. Meyer, 2016: Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation. Geophys Res Lett., 43, 13491356, doi:10.1002/2016GL067679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., O. Bothe, H. F. Graf, N. Omrani, A. Rubino, and J. H. Jungclaus, 2016: A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability. Geophys. Res. Lett., 43, 784792, doi:10.1002/2015GL067284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, doi:10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2015: Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Climate, 28, 76787701, doi:10.1175/JCLI-D-14-00647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Zhao, 2015: Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. J. Adv. Model. Earth Syst., 7, 739758, doi:10.1002/2014MS000415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L07403, doi:10.1029/2008GL033222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, doi:10.1175/JCLI3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4499 1070 36
PDF Downloads 2467 388 23