Saharan Heat Low Biases in CMIP5 Models

Ross D. Dixon Department of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Ross D. Dixon in
Current site
Google Scholar
PubMed
Close
,
Anne Sophie Daloz Department of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Anne Sophie Daloz in
Current site
Google Scholar
PubMed
Close
,
Daniel J. Vimont Department of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Daniel J. Vimont in
Current site
Google Scholar
PubMed
Close
, and
Michela Biasutti Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Michela Biasutti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Representing the West African monsoon (WAM) is a major challenge in climate modeling because of the complex interaction between local and large-scale mechanisms. This study focuses on the representation of a key aspect of West African climate, namely the Saharan heat low (SHL), in 22 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel dataset. Comparison of the CMIP5 simulations with reanalyses shows large biases in the strength and location of the mean SHL. CMIP5 models tend to develop weaker climatological heat lows than the reanalyses and place them too far southwest. Models that place the climatological heat low farther to the north produce more mean precipitation across the Sahel, while models that place the heat low farther to the east produce stronger African easterly wave (AEW) activity. These mean-state biases are seen in model ensembles with both coupled and fixed sea surface temperatures (SSTs). The importance of SSTs on West African climate variability is well documented, but this research suggests SSTs are secondary to atmospheric biases for understanding the climatological SHL bias. SHL biases are correlated across the models to local radiative terms, large-scale tropical precipitation, and large-scale pressure and wind across the Atlantic, suggesting that local mechanisms that control the SHL may be connected to climate model biases at a much larger scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0134.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ross D. Dixon, rddixon@wisc.edu

Abstract

Representing the West African monsoon (WAM) is a major challenge in climate modeling because of the complex interaction between local and large-scale mechanisms. This study focuses on the representation of a key aspect of West African climate, namely the Saharan heat low (SHL), in 22 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel dataset. Comparison of the CMIP5 simulations with reanalyses shows large biases in the strength and location of the mean SHL. CMIP5 models tend to develop weaker climatological heat lows than the reanalyses and place them too far southwest. Models that place the climatological heat low farther to the north produce more mean precipitation across the Sahel, while models that place the heat low farther to the east produce stronger African easterly wave (AEW) activity. These mean-state biases are seen in model ensembles with both coupled and fixed sea surface temperatures (SSTs). The importance of SSTs on West African climate variability is well documented, but this research suggests SSTs are secondary to atmospheric biases for understanding the climatological SHL bias. SHL biases are correlated across the models to local radiative terms, large-scale tropical precipitation, and large-scale pressure and wind across the Atlantic, suggesting that local mechanisms that control the SHL may be connected to climate model biases at a much larger scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0134.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ross D. Dixon, rddixon@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 611.68 KB)
Save
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barandiaran, D., and S.-Y. Wang, 2014: The missing teleconnection between the North Atlantic and the Sahel precipitation in CFSv2. Atmos. Sci. Lett., 15, 2128, doi:10.1002/asl2.457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model. Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164.

  • Biasutti, M., A. Sobel, and Y. Kushnir, 2006: AGCM precipitation biases in the tropical Atlantic. J. Climate, 19, 935958, doi:10.1175/JCLI3673.1.

  • Biasutti, M., A. Sobel, and S. J. Camargo, 2009: The role of the Sahara low in summertime Sahel rainfall variability and change in the CMIP3 models. J. Climate, 22, 57555771, doi:10.1175/2009JCLI2969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chauvin, F., R. Roehrig, and J.-P. Lafore, 2010: Intraseasonal variability of the Saharan heat low and its link with midlatitudes. J. Climate, 23, 25442561, doi:10.1175/2010JCLI3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability in the tropical Pacific and tropical Atlantic. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, doi:10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2015: Detection and analysis of an amplified warming of the Sahara Desert. J. Climate, 28, 65606580, doi:10.1175/JCLI-D-14-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twentieth-century intermodel variability. J. Climate, 26, 49104929, doi:10.1175/JCLI-D-12-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobinski, P., B. Sultan, and S. Janicot, 2005: Role of the Hoggar massif in the West African monsoon onset. Geophys. Res. Lett., 32, L01705, doi:10.1029/2004GL020710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., R. Washington, C. Flamant, D. J. Parker, C. Allen, and M. Todd, 2015: The Saharan heat low and moisture transport pathways in the central Sahara—Multiaircraft observations and Africa-LAM evaluation. J. Geophys. Res. Atmos., 120, 44174442, doi:10.1002/2015JD023123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, S. Fiedler, and O. Doherty, 2014: An analysis of aeolian dust in climate models. Geophys. Res. Lett., 41, 59966001, doi:10.1002/2014GL060545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, C. Lavaysse, C. Kocha, and A. Saci, 2015: Water vapor–forced greenhouse warming over the Sahara Desert and the recent recovery from the Sahelian drought. J. Climate, 28, 108123, doi:10.1175/JCLI-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Pamer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, doi:10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, doi:10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 1999: Climate simulations of African easterly waves. J. Climate, 12, 17471769, doi:10.1175/1520-0442(1999)012<1747:CSOAEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, doi:10.1126/science.1089357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., S. Salack, T. Lodoun, A. Ali, A. Gaye, and O. Ndiaye, 2013: A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett., 8, 024010, doi:10.1088/1748-9326/8/2/024010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. M. Selten, S. L. Weber, and M. Kliphuis, 2005: Sahel rainfall variability and response to greenhouse warming. Geophys. Res. Lett., 32, L17702, doi:10.1029/2005GL023232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., and K. H. Cook, 2007: Dynamics of the West African monsoon jump. J. Climate, 20, 52645284, doi:10.1175/2007JCLI1533.1.

  • Held, I., T. Delworth, J. Lu, K. L. Findell, and T. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, doi:10.1073/pnas.0509057102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2008: On the instability of the African easterly jet and the generation of African waves: Reversals of the potential vorticity gradient. J. Atmos. Sci., 65, 21302151, doi:10.1175/2007JAS2552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 15981614, doi:10.1002/qj.2047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffrey, S., L. Rotstayn, M. Collier, S. Dravitzki, C. Hamalainen, C. Moeseneder, K. Wong, and J. Syktus, 2013: Australia’s CMIP5 submission using the CSIRO Mk3.6 model. Aust. Meteor. Oceanogr. J., 63, 113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, doi:10.5194/gmd-7-2039-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570, doi:10.5194/gmd-4-543-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., L. Polvani, J. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954, doi:10.1126/science.1202131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langenbrunner, B., J. D. Neelin, B. R. Lintner, and B. T. Anderson, 2015: Patterns of precipitation change and climatological uncertainty among CMIP5 models, with a focus on the midlatitude Pacific storm track. J. Climate, 28, 78577872, doi:10.1175/JCLI-D-14-00800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, D. Parker, J.-P. Lafore, B. Sultan, and J. Pelon, 2009: Seasonal evolution of the West African heat low: a climatological perspective. Climate Dyn., 33, 313330, doi:10.1007/s00382-009-0553-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, and S. Janicot, 2010a: Regional-scale convection patterns during strong and weak phases of the Saharan heat low. Atmos. Sci. Lett., 11, 255264, doi:10.1002/asl.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, and P. Knippertz, 2010b: Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Quart. J. Roy. Meteor. Soc., 136, 141158, doi:10.1002/qj.555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., J.-P. Chaboureau, and C. Flamant, 2011: Dust impact on the West African heat low in summertime. Quart. J. Roy. Meteor. Soc., 137, 12271240, doi:10.1002/qj.844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, A. Evan, S. Janicot, and M. Gaetani, 2015: Recent climatological trend of the Saharan Heat Low and its impact on the West African climate. Climate Dyn., 47, 34793498, doi:10.1007/s00382-015-2847-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. C. Chiang, C. Chou, and C. M. Patricola, 2014: Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall. Climate Dyn., 43, 27972811, doi:10.1007/s00382-014-2094-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., B. Fontaine, and P. Roucou, 2012: Expected future changes in the African monsoon between 2030 and 2070 using some CMIP3 and CMIP5 models under a medium-low RCP scenario. J. Geophys. Res., 117, D16111, doi:10.1029/2012JD017510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., P. Roucou, and B. Fontaine, 2013: Mid-century effects of climate change on African monsoon dynamics using the A1B emission scenario. Int. J. Climatol., 33, 881896, doi:10.1002/joc.3476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndiaye, O., M. N. Ward, and W. M. Thiaw, 2011: Predictability of seasonal Sahel rainfall using GCMs and lead-time improvements through the use of a coupled model. J. Climate, 24, 19311949, doi:10.1175/2010JCLI3557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Rep. NCAR/TN-486+STR, 268 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. Int. Scholarly Res. Not. Meteor., 2013, 453521, doi:10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., J. Bader, and D. Matei, 2015: Northern-Hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat. Commun., 6, 5985, doi:10.1038/ncomms6985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Previdi, M., and B. G. Liepert, 2007: Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett., 34, L22701, doi:10.1029/2007GL031243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramel, R., H. Gallée, and C. Messager, 2006: On the northward shift of the West African monsoon. Climate Dyn., 26, 429440, doi:10.1007/s00382-005-0093-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, A. J., J. H. Marsham, and P. Knippertz, 2015: Disagreements in low-level moisture between (re)analyses over summertime West Africa. Mon. Wea. Rev., 143, 11931211, doi:10.1175/MWR-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2015: Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. J. Climate, 28, 40344060, doi:10.1175/JCLI-D-14-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., F. Chauvin, and J.-P. Lafore, 2011: 10–25-day intraseasonal variability of convection over the Sahel: A role of the Saharan heat low and midlatitudes. J. Climate, 24, 58635878, doi:10.1175/2011JCLI3960.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J.-L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, doi:10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, doi:10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The preonset and onset of the summer monsoon. J. Climate, 16, 34073427, doi:10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., S. Janicot, and A. Diedhiou, 2003: The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Climate, 16, 33893406, doi:10.1175/1520-0442(2003)016<3389:TWAMDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786.

  • Vellinga, M., A. Arribas, and R. Graham, 2013: Seasonal forecasts for regional onset of the West African monsoon. Climate Dyn., 40, 30473070, doi:10.1007/s00382-012-1520-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2009: A mechanism for African monsoon breaks: Mediterranean cold air surges. J. Geophys. Res., 114, D01104, doi:10.1029/2008JD010654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., K. H. Cook, J. Crtat, and N. Neupane, 2013: Projections of a wetter Sahel in the twenty-first century from global and regional models. J. Climate, 26, 46644687, doi:10.1175/JCLI-D-12-00533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E., N. Dianskii, and A. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv., Atmos. Oceanic Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 3456, doi:10.1007/s13351-014-3041-7.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3 model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1525 634 57
PDF Downloads 515 96 8