The Sensitivity of the Proportionality between Temperature Change and Cumulative CO2 Emissions to Ocean Mixing

Dana Ehlert Simon Fraser University, Burnaby, British Columbia, Canada

Search for other papers by Dana Ehlert in
Current site
Google Scholar
PubMed
Close
,
Kirsten Zickfeld Simon Fraser University, Burnaby, British Columbia, Canada

Search for other papers by Kirsten Zickfeld in
Current site
Google Scholar
PubMed
Close
,
Michael Eby School of Earth and Ocean Sciences, University of Victoria, Victoria, and Simon Fraser University, Burnaby, British Columbia, Canada

Search for other papers by Michael Eby in
Current site
Google Scholar
PubMed
Close
, and
Nathan Gillett Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada

Search for other papers by Nathan Gillett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ratio of global mean surface air temperature change to cumulative CO2 emissions, referred to as transient climate response to cumulative CO2 emissions (TCRE), has been shown to be approximately constant on centennial time scales. The mechanisms behind this constancy are not well understood, but previous studies suggest that compensating effects of ocean heat and carbon fluxes, which are governed by the same ocean mixing processes, could be one cause for this approximate constancy. This hypothesis is investigated by forcing different versions of the University of Victoria Earth System Climate Model, which differ in the ocean mixing parameterization, with an idealized scenario of 1% annually increasing atmospheric CO2 until quadrupling of the preindustrial CO2 concentration and constant concentration thereafter. The relationship between surface air warming and cumulative emissions remains close to linear, but the TCRE varies between model versions, spanning the range of 1.2°–2.1°C EgC−1 at the time of CO2 doubling. For all model versions, the TCRE is not constant over time while atmospheric CO2 concentrations increase. It is constant after atmospheric CO2 stabilizes at 1120 ppm, because of compensating changes in temperature sensitivity (temperature change per unit radiative forcing) and cumulative airborne fraction. The TCRE remains approximately constant over time even if temperature sensitivity, determined by ocean heat flux, and cumulative airborne fraction, determined by ocean carbon flux, are taken from different model versions with different ocean mixing settings. This can partially be explained with temperature sensitivity and cumulative airborne fraction following similar trajectories, which suggests ocean heat and carbon fluxes scale approximately linearly with changes in vertical mixing.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0247.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dana Ehlert, dehlert@sfu.ca

Abstract

The ratio of global mean surface air temperature change to cumulative CO2 emissions, referred to as transient climate response to cumulative CO2 emissions (TCRE), has been shown to be approximately constant on centennial time scales. The mechanisms behind this constancy are not well understood, but previous studies suggest that compensating effects of ocean heat and carbon fluxes, which are governed by the same ocean mixing processes, could be one cause for this approximate constancy. This hypothesis is investigated by forcing different versions of the University of Victoria Earth System Climate Model, which differ in the ocean mixing parameterization, with an idealized scenario of 1% annually increasing atmospheric CO2 until quadrupling of the preindustrial CO2 concentration and constant concentration thereafter. The relationship between surface air warming and cumulative emissions remains close to linear, but the TCRE varies between model versions, spanning the range of 1.2°–2.1°C EgC−1 at the time of CO2 doubling. For all model versions, the TCRE is not constant over time while atmospheric CO2 concentrations increase. It is constant after atmospheric CO2 stabilizes at 1120 ppm, because of compensating changes in temperature sensitivity (temperature change per unit radiative forcing) and cumulative airborne fraction. The TCRE remains approximately constant over time even if temperature sensitivity, determined by ocean heat flux, and cumulative airborne fraction, determined by ocean carbon flux, are taken from different model versions with different ocean mixing settings. This can partially be explained with temperature sensitivity and cumulative airborne fraction following similar trajectories, which suggests ocean heat and carbon fluxes scale approximately linearly with changes in vertical mixing.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0247.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dana Ehlert, dehlert@sfu.ca

Supplementary Materials

    • Supplemental Materials (PDF 2.22 MB)
Save
  • Allen, M. R., D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, and N. Meinshausen, 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458, 11631166, doi:10.1038/nature08019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, D., 1996: A data-driven model of the global calcite lysocline. Global Biogeochem. Cycles, 10, 511526, doi:10.1029/96GB01521.

  • Bindoff, N., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952, doi:10.1017/CBO9781107415324.022.

    • Crossref
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

    • Crossref
    • Export Citation
  • Cox, P. M., 2001: Description of the TRIFFID dynamic global vegetation model. Met Office Hadley Centre Tech. Note 24, 17 pp.

  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203, doi:10.1007/s003820050276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eby, M., K. Zickfeld, A. Montenegro, D. Archer, K. J. Meissner, and A. J. Weaver, 2009: Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J. Climate, 22, 25012511, doi:10.1175/2008JCLI2554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewen, T. L., A. J. Weaver, and M. Eby, 2004: Sensitivity of the inorganic ocean carbon cycle to future climate warming in the UVic coupled model. Atmos.–Ocean, 42, 2342, doi:10.3137/ao.420103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, doi:10.1175/JCLI3800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., and D. J. Paynter, 2015: Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ. Res. Lett., 10, 075002, doi:10.1088/1748-9326/10/7/075002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, doi:10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 68446858, doi:10.1175/JCLI-D-12-00476.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. Abernathey, and M.-A. Pradal, 2015a: Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth system models. Ocean Sci., 11, 591605, doi:10.5194/os-11-591-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015b: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, doi:10.1002/2015GL064100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goes, M., N. M. Urban, R. Tonkonojenkov, M. Haran, A. Schmittner, and K. Keller, 2010: What is the skill of ocean tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic meridional overturning circulation? J. Geophys. Res., 115, C12006, doi:10.1029/2010JC006407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodwin, P., R. G. Williams, and A. Ridgwell, 2015: Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat. Geosci., 8, 2934, doi:10.1038/ngeo2304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., T. Andrews, and P. Good, 2015: The inconstancy of the transient climate response parameter under increasing CO2. Philos. Trans. Roy. Soc. London, 373A, 20140417, doi:10.1098/rsta.2014.0417.

    • Search Google Scholar
    • Export Citation
  • Herrington, T., and K. Zickfeld, 2014: Path independence of climate and carbon cycle response over a broad range of cumulative carbon emissions. Earth Syst. Dyn., 5, 409422, doi:10.5194/esd-5-409-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krasting, J. P., J. P. Dunne, E. Shevliakova, and R. J. Stouffer, 2014: Trajectory sensitivity of the transient climate response to cumulative carbon emissions. Geophys. Res. Lett., 41, 25202527, doi:10.1002/2013GL059141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, doi:10.1029/2012GL052952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leduc, M., H. D. Matthews, and R. de Elía, 2015: Quantifying the limits of a linear temperature response to cumulative CO2 emissions. J. Climate, 28, 99559968, doi:10.1175/JCLI-D-14-00500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., and P. Friedlingstein, 2015: The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. J. Climate, 28, 42174230, doi:10.1175/JCLI-D-14-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., N. C. Swart, and R. Knutti, 2016: The uncertainty in the transient climate response to cumulative CO2 emissions arising from the uncertainty in physical climate parameters. J. Climate, 30, 813827, doi:10.1175/JCLI-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., N. P. Gillett, P. A. Stott, and K. Zickfeld, 2009: The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829832, doi:10.1038/nature08047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, K. J., J. Weaver, H. D. Matthews, and P. M. Cox, 2003: The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Climate Dyn., 21, 515537, doi:10.1007/s00382-003-0352-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, R., R. Sriver, M. Goes, N. M. Urban, H. D. Matthews, M. Haran, and K. Keller, 2012: A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth system model. J. Geophys. Res., 117, D04103, doi:10.1029/2011JD016620.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., and Coauthors, 2014: Sharing a quota on cumulative carbon emissions. Nat. Climate Change, 4, 873879, doi:10.1038/nclimate2384.

  • Ross, A., H. D. Matthews, A. Schmittner, and Z. Kothavala, 2012: Assessing the effects of ocean diffusivity and climate sensitivity on the rate of global climate change. Tellus, 64B, 17733, doi:10.3402/tellusb.v64i0.17733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., and A. J. Weaver, 2001: Dependence of multiple climate states on ocean mixing parameters. Geophys. Res. Lett., 28, 10271030, doi:10.1029/2000GL012410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., A. Oschlies, X. Giraud, M. Eby, and H. L. Simmons, 2005: A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Global Biogeochem. Cycles, 19, GB3004, doi:10.1029/2004GB002283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmittner, A., N. M. Urban, K. Keller, and D. Matthews, 2009: Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate-carbon cycle projections. Global Biogeochem. Cycles, 23, GB4009, doi:10.1029/2008GB003421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., G.-K. Plattner, R. Knutti, and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 106, 17041709, doi:10.1073/pnas.0812721106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokarska, K. B., N. P. Gillett, A. J. Weaver, V. K. Arora, and M. Eby, 2016: The climate response to five trillion tonnes of carbon. Nat. Climate Change, 6, 851855, doi:10.1038/nclimate3036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., J. B. Palter, T. M. Merlis, Y. Huang, and Y. Xia, 2016: Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change. Geophys. Res. Lett., 43, 39353943, doi:10.1002/2016GL067931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos.–Ocean, 39, 361428, doi:10.1080/07055900.2001.9649686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R. G., P. Goodwin, V. M. Rouusenov, and L. Bopp, 2016: A framework to understand the transient climate response to emissions. Environ. Res. Lett., 11, 15003, doi:10.1088/1748-9326/11/1/015003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, doi:10.1175/JCLI-D-12-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., M. Eby, H. D. Matthews, and A. J. Weaver, 2009: Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl. Acad. Sci. USA, 106, 16 12916 134, doi:10.1073/pnas.0805800106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., M. Eby, H. D. Matthews, A. Schmittner, and A. J. Weaver, 2011: Nonlinearity of carbon cycle feedbacks. J. Climate, 24, 42554275, doi:10.1175/2011JCLI3898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., A. H. MacDougall, and H. D. Matthews, 2016: On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett., 11, 055006, doi:10.1088/1748-9326/11/5/055006.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2202 1362 73
PDF Downloads 697 176 26