Insensitivity of the Summer South Asian High Intensity to a Warming Tibetan Plateau in Modern Reanalysis Datasets

Liguang Wu Key Laboratory of Meteorological Disaster, Ministry of Education/Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Liguang Wu in
Current site
Google Scholar
PubMed
Close
,
Xiaofang Feng Key Laboratory of Meteorological Disaster, Ministry of Education/Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaofang Feng in
Current site
Google Scholar
PubMed
Close
, and
Mei Liang Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang, China

Search for other papers by Mei Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The South Asia high (SAH) is a prominent circulation system of the Asian summer monsoon, exerting profound influences on the weather and climate in China and surrounding regions. Its formation and maintenance is closely associated with strong summertime continental heating in the form of surface sensible heat flux and the latent heat release in connection with the Asian monsoon. In this study, the possible response of the South Asian high intensity to the thermal condition change in the Tibetan Plateau is examined with four modern reanalysis datasets, including the Modern-Era Retrospective Analysis for Research and Applications (MERRA), MERRA version 2 (MERRA-2), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), and the Japanese 55-year Reanalysis (JRA-55). Despite the surface air warming in the four modern reanalysis datasets, reduced surface wind speed in three of the reanalysis datasets, and decreased surface sensible heat flux in the MERRA-2 dataset, there is no statistically significant trend in the SAH intensity over the period 1979–2015. One of the possible reasons is that the response of the upper-level circulation to the thermal condition change of the Tibetan Plateau occurs mainly in the 200-hPa subtropical westerly jet stream, which is located far away from the center of the South Asian high. Thus the South Asian high intensity is not particularly sensitive to the thermal condition change of the Tibetan Plateau, while the center of the South Asian high intensity over the plateau exhibits a northward trend over the period.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Liguang Wu, liguang@nuist.edu.cn

Abstract

The South Asia high (SAH) is a prominent circulation system of the Asian summer monsoon, exerting profound influences on the weather and climate in China and surrounding regions. Its formation and maintenance is closely associated with strong summertime continental heating in the form of surface sensible heat flux and the latent heat release in connection with the Asian monsoon. In this study, the possible response of the South Asian high intensity to the thermal condition change in the Tibetan Plateau is examined with four modern reanalysis datasets, including the Modern-Era Retrospective Analysis for Research and Applications (MERRA), MERRA version 2 (MERRA-2), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), and the Japanese 55-year Reanalysis (JRA-55). Despite the surface air warming in the four modern reanalysis datasets, reduced surface wind speed in three of the reanalysis datasets, and decreased surface sensible heat flux in the MERRA-2 dataset, there is no statistically significant trend in the SAH intensity over the period 1979–2015. One of the possible reasons is that the response of the upper-level circulation to the thermal condition change of the Tibetan Plateau occurs mainly in the 200-hPa subtropical westerly jet stream, which is located far away from the center of the South Asian high. Thus the South Asian high intensity is not particularly sensitive to the thermal condition change of the Tibetan Plateau, while the center of the South Asian high intensity over the plateau exhibits a northward trend over the period.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Liguang Wu, liguang@nuist.edu.cn
Save
  • Choi, K.-S., B.-J. Kim, R. Zhang, J.-C. Nam, K.-J. Park, J.-Y. Kim, and D.-W. Kim, 2016: Possible influence of South Asian high on summer rainfall variability in Korea. Climate Dyn., 46, 833846, doi:10.1007/s00382-015-2615-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, doi:10.1002/joc.1615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 31493164, doi:10.1175/2007JCLI1912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2009: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Climate, 22, 41974212, doi:10.1175/2009JCLI2699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., G. Wu, Q. Zhang, and Y. Liu, 2006: New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chin. Sci. Bull., 51, 13961400, doi:10.1007/s11434-006-1396-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, J., L. Li, and Y. Fang, 2015: Seasonal spatial heterogeneity of warming rates on the Tibetan Plateau over the past 30 years. Sci. Rep., 5, 11725, doi:10.1038/srep11725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, P. J., J. A. Knaff, C. W. Landsea, and S. V. Finley, 1995: A systematic bias in the aviation model’s forecast of the Atlantic tropical upper tropospheric trough: Implications for tropical cyclone forecasting. Wea. Forecasting, 10, 433446, doi:10.1175/1520-0434(1995)010<0433:DOASBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180186.

  • Flohn, H., 1960: Recent investigations on the mechanism of the “summer monsoon” of southern and eastern Asia. Symposium on Monsoons of the World, Hind Union Press, 75–88.

  • Fu, J., and S. Li, 2012: Intercomparison of the South Asian high in NCEP1, NCEP2, and ERA-40 reanalyses and in station observations. Atmos. Oceanic Sci. Lett., 5, 189194, doi:10.1080/16742834.2012.11446989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, doi:10.1029/2001GL014523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, B., and W. Hu, 2015: Assessment of the summer South Asian high in eighteen CMIP5 models. Atmos. Oceanic Sci. Lett., 8, 3338, doi:10.3878/AOSL20140069.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, doi:10.1002/qj.49712454911.

  • Hu Z.-Z., S. Yang, R. Wu, 2003: Long-term climate variations in China and global warming signals. J. Geophys. Res., 108, 4614, doi:10.1029/2003JD003651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., H. Wang, K. Fan, and Y. Gao, 2015: The western Pacific subtropical high after the 1970s: Westward or eastward shift? Climate Dyn., 44, 20352047, doi:10.1007/s00382-014-2194-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, W. E., Jr., and D. R. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western North Pacific. Mon. Wea. Rev., 110, 471480, doi:10.1175/1520-0493(1982)110<0471:ADSOUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., and A. Robson, Eds., 2000: Detecting trend and other changes in hydrological data. WCDMP-45, WMO-TD 1013, 157 pp.

    • Crossref
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501514, doi:10.1007/s00382-008-0482-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., G. Wu, J. Mao, and J. He, 2013: Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J. Climate, 26, 29762991, doi:10.1175/JCLI-D-12-00286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, H. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part III: Condensation heating and South Asian high and western Pacific subtropical high (in Chinese). Acta Meteor. Sin., 57, 525538.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, H. Liu, and P. Liu, 2001: Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Climate Dyn., 17, 327338, doi:10.1007/s003820000117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, and R. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682698, doi:10.1175/1520-0442(2004)017<0682:RBTSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, J. Hong, B. Dong, A. Duan, Q. Bao, and L. Zhou, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 11831195, doi:10.1007/s00382-012-1335-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, S., Z. Qian, and Q. Wang, 1982: Synoptic and climatic studies on relationships between the Tibetan high and the summer floods and droughts in East China (in Chinese). Plateau Meteor., 1, 110.

    • Search Google Scholar
    • Export Citation
  • Mason, R. B., and C. E. Anderson, 1963: The development and decay of the 100-mb summertime anticyclone over southern Asia. Mon. Wea. Rev., 91, 312, doi:10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, doi:10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., Q. Zhang, Y. Yao, and X. Zhang, 2002: Seasonal variation and heat preference of the South Asia high. Adv. Atmos. Sci., 19, 821836, doi:10.1007/s00376-002-0047-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2008: China: The third pole. Nature, 454, 393396, doi:10.1038/454393a.

  • Qu, X., and G. Huang, 2012: An enhanced influence of tropical Indian Ocean on the South Asia high after the late 1970s. J. Climate, 25, 69306941, doi:10.1175/JCLI-D-11-00696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and D. J. Gaffen, 2000: Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res., 105, 15 50915 524, doi:10.1029/2000JD900155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, R., Y. Liu, and G. Wu, 2007: The short-term process and mechanism of South Asia high affected the western Pacific subtropical high in July 1998 (in Chinese). J. Meteor. Res., 65, 183197.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 12661278, doi:10.1175/1520-0493(1976)104<1266:AROTTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003a: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479483, doi:10.1126/science.1084123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003b: Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res., 108, 4002, doi:10.1029/2002JD002258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., R. J. Ross, J. K. Angell, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 78577878, doi:10.1029/2000JD900837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, and D. Dee, 2007: Update on ERA-Interim. ECMWF Newsletter, No. 111, ECMWF, Reading, United Kingdom, p. 5.

  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, doi:10.1002/2013GL058705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and F. Zhu, 1964: The variation of 100 mb circulation over South Asia in summer and its association with arch and withdraw of west Pacific subtropical high (in Chinese). Acta Meteor. Sin., 34, 385395.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and Y. Ding, 1981: Observational evidence of the influence of the Qinghai–Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330, doi:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., 2001: The weakening of Asian monsoon circulation after the end of 1970s. Adv. Atmos. Sci., 18, 376386, doi:10.1007/BF02919316.

  • Wargan, K., and L. Coy, 2016: Strengthening of the tropopause inversion layer during the 2009 sudden stratospheric warming: A MERRA-2 study. J. Atmos. Sci., 73, 18711887, doi:10.1175/JAS-D-15-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 2006: The coupled monsoon system. The Asian Monsoon, B. Wang, Ed., Springer/Praxis Publishing, 3–66.

    • Crossref
    • Export Citation
  • Wu, G., and Y. Liu, 2003: Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett., 30, 1201, doi:10.1029/2002GL016209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part I: Scale analysis (in Chinese). Acta Meteor. Sin., 57, 257263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, doi:10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, doi:10.1038/srep00404.

  • Wu, G., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev., 2, 100116, doi:10.1093/nsr/nwu045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2008: What has changed the proportion of intense hurricanes in the last 30 years? J. Climate, 21, 14321439, doi:10.1175/2007JCLI1715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and C. Wang, 2015: Has the western Pacific subtropical high extended westward since the late 1970s? J. Climate, 28, 54065413, doi:10.1175/JCLI-D-14-00618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 15371542, doi:10.1002/2015GL063450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency. Climate Dyn., 46, 34053417, doi:10.1007/s00382-015-2775-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, M., C.-P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, and H. Zhang, 2006: Steady decline of East Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res., 111, D24111, doi:10.1029/2006JD007337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, X., W. Chen, D. Nath, and D. Zhou, 2015: Whether the decadal shift of South Asia high intensity around the late 1970s exists or not. Theor. Appl. Climatol., 120, 673683, doi:10.1007/s00704-014-1200-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and G. Wu, 2006: Effects of the Tibetan Plateau. The Asian Monsoon, B. Wang, Ed., Springer/Praxis Publishing, 513–549, doi:10.1007/3-540-37722-0_13.

    • Crossref
    • Export Citation
  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects of the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, D., and Coauthors, 1979: Meteorology over the Tibetan Plateau (in Chinese).

  • Yeh, D., S. Luo, and P. C. Chu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding (in Chinese). Acta Meteor. Sin., 28, 108121.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Y. Zhang, J. Dong, and X. Xiao, 2013: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA, 110, 43094314, doi:10.1073/pnas.1210423110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P.-F., Y. Liu, and B. He, 2016: Impact of East Asian summer monsoon heating on the interannual variation of the South Asian high. J. Climate, 29, 159173, doi:10.1175/JCLI-D-15-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P.-Q., S. Yang, and V. E. Kousky, 2005: South Asian high and Asian–Pacific–American climate teleconnection. Adv. Atmos. Sci., 22, 915923, doi:10.1007/BF02918690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Y. Qian, and X. Zhang, 2000: The interannual and interdecadal variations of the South Asian high. Chin. J. Atmos. Sci., 24, 6778.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., G. Wu, and Y. Qian, 2002: The bimodality of the 100-hPa South Asia high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733744, doi:10.2151/jmsj.80.733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455467, doi:10.1127/0941-2948/2009/0396.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 532 128 6
PDF Downloads 398 76 13