Dominant Covarying Climate Signals in the Southern Ocean and Antarctic Sea Ice Influence during the Last Three Decades

D. Cerrone Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Naples, Italy

Search for other papers by D. Cerrone in
Current site
Google Scholar
PubMed
Close
,
G. Fusco Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Naples, and Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy

Search for other papers by G. Fusco in
Current site
Google Scholar
PubMed
Close
,
I. Simmonds School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by I. Simmonds in
Current site
Google Scholar
PubMed
Close
,
G. Aulicino Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy

Search for other papers by G. Aulicino in
Current site
Google Scholar
PubMed
Close
, and
G. Budillon Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Naples, Italy

Search for other papers by G. Budillon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A composite dataset (comprising geopotential height, sea surface temperature, zonal and meridional surface winds, precipitation, cloud cover, surface air temperature, latent plus sensible heat fluxes, and sea ice concentration) has been investigated with the aim of revealing the dominant time scales of variability from 1982 to 2013. Three covarying climate signals associated with variations in the sea ice distribution around Antarctica have been detected through the application of the multiple-taper method with singular value decomposition (MTM-SVD). Features of the established patterns of variation over the Southern Hemisphere extratropics have been identified in each of these three climate signals in the form of coupled or individual oscillations. The climate patterns considered here are the southern annular mode (SAM), the Pacific–South American (PSA) teleconnection, the semiannual oscillation (SAO), and the zonal wavenumber-3 (ZW3) mode. It is shown that most of the sea ice temporal variance is concentrated at the quasi-triennial scale resulting from the constructive superposition of the PSA and ZW3 patterns. In addition, the combination of the SAM and SAO patterns is found to promote the interannual sea ice variations underlying a general change in the Southern Ocean atmospheric and oceanic circulations. These two modes of variability are also found to be consistent with the occurrence of the positive SAM/negative PSA (SAM+/PSA) or negative SAM/positive PSA (SAM/PSA+) combinations, which could have favored the cooling of the sub-Antarctic region and important changes in the Antarctic sea ice distribution since 2000.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: D. Cerrone, dario.cerrone@uniparthenope.it; G. Fusco, giannetta.fusco@uniparthenope.it

Abstract

A composite dataset (comprising geopotential height, sea surface temperature, zonal and meridional surface winds, precipitation, cloud cover, surface air temperature, latent plus sensible heat fluxes, and sea ice concentration) has been investigated with the aim of revealing the dominant time scales of variability from 1982 to 2013. Three covarying climate signals associated with variations in the sea ice distribution around Antarctica have been detected through the application of the multiple-taper method with singular value decomposition (MTM-SVD). Features of the established patterns of variation over the Southern Hemisphere extratropics have been identified in each of these three climate signals in the form of coupled or individual oscillations. The climate patterns considered here are the southern annular mode (SAM), the Pacific–South American (PSA) teleconnection, the semiannual oscillation (SAO), and the zonal wavenumber-3 (ZW3) mode. It is shown that most of the sea ice temporal variance is concentrated at the quasi-triennial scale resulting from the constructive superposition of the PSA and ZW3 patterns. In addition, the combination of the SAM and SAO patterns is found to promote the interannual sea ice variations underlying a general change in the Southern Ocean atmospheric and oceanic circulations. These two modes of variability are also found to be consistent with the occurrence of the positive SAM/negative PSA (SAM+/PSA) or negative SAM/positive PSA (SAM/PSA+) combinations, which could have favored the cooling of the sub-Antarctic region and important changes in the Antarctic sea ice distribution since 2000.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: D. Cerrone, dario.cerrone@uniparthenope.it; G. Fusco, giannetta.fusco@uniparthenope.it
Save
  • Aulicino, G., G. Fusco, S. Kern, and G. Budillon, 2014: Estimation of sea-ice thickness in Ross and Weddell Seas from SSM/I brightness temperatures. IEEE Trans. Geosci. Remote Sens., 52, 41224140, doi:10.1109/TGRS.2013.2279799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D. and M. S. Halpert, 1998: Climate assessment for 1997. Bull. Amer. Meteor. Soc., 79, S1S50, doi:10.1175/1520-0477(1998)079<1014:CAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., M. S. Halpert, V. E. Kousky, M. E. Gelman, C. F. Ropelewski, A. V. Douglas, and R. C. Schnell, 1999: Climate assessment for 1998. Bull. Amer. Meteor. Soc., 80, S1S48, doi:10.1175/1520-0477(1999)080<1040:CAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. N. Rogers, P. Kållberg, R. I. Cullather, J. W. C. White, and K. J. Kreutz, 2000: ECMWF analyses and reanalyses depiction of ENSO signal in Antarctic precipitation. J. Climate, 13, 14061420, doi:10.1175/1520-0442(2000)013<1406:EAARDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. G. Baines, and H. B. Gordon, 1999: Southern mid- to high-latitude variability, a zonal wavenumber-3 pattern, and the Antarctic circumpolar wave in the CSIRO coupled model. J. Climate, 12, 30873104, doi:10.1175/1520-0442(1999)012<3087:SMTHLV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1989: Antarctic sea-ice relationships with indices of the atmospheric circulation of the Southern Hemisphere. Climate Dyn., 3, 207220, doi:10.1007/BF01058236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., G. John, and R. Welsch, 1998: Interannual variations and regionality of Antarctic sea-ice-temperature associations. Ann. Glaciol., 27, 403408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, L. S., 1983: Variation of Antarctic sea ice: An update. Mon. Wea. Rev., 111, 578580, doi:10.1175/1520-0493(1983)111<0578:VOASIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotroneo, Y., G. Budillon, G. Fusco, and G. Spezie, 2013: Cold core eddies and fronts of the Antarctic Circumpolar Current south of New Zealand from in situ and satellite data. J. Geophys. Res. Oceans, 118, 26532666, doi:10.1002/jgrc.20193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. L. Van Woert, 1996: Interannual variations in Antarctic precipitation related to El Niño–Southern Oscillation. J. Geophys. Res., 101, 19 10919 118, doi:10.1029/96JD01769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Magalhães Neto, N., H. Evangelista, K. Tanizaki-Fonseca, M. S. P. Meirelles, and C. E. Garcia, 2012: A multivariate analysis of Antarctic sea ice since 1979. Climate Dyn., 38, 11151128, doi:10.1007/s00382-011-1162-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, H., and A. Ohmura, 1990: The influence of atmospheric half-yearly cycle on the sea ice extent in the Antarctic. J. Geophys. Res., 95, 94979511, doi:10.1029/JC095iC06p09497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, doi:10.1175/JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, doi:10.1007/s00382-010-0905-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., A. J. Wovrosh, R. A. Langen, and I. Simmonds, 2012: The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas low. J. Geophys. Res., 117, D07111, doi:10.1029/2011JD017337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fusco, G., D. Flocco, G. Budillon, G. Spezie, and E. Zambianchi, 2002: Dynamics and variability of Terra Nova Bay polynya. Mar. Ecol., 23, 201209, doi:10.1111/j.1439-0485.2002.tb00019.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fusco, G., G. Budillon, and G. Spezie, 2009: Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res., 29, 18871895, doi:10.1016/j.csr.2009.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and D. S. Battisti, 1999: Interannual and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123, doi:10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genthon, C., and E. Cosme, 2003: Intermittent signature of ENSO in west-Antarctic precipitation. Geophys. Res. Lett., 30, 2081, doi:10.1029/2003GL018280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gloersen, P., 1995: Modulation of hemispheric sea-ice cover by ENSO events. Nature, 373, 503506, doi:10.1038/373503a0.

  • Godfred-Spenning, C. R., and I. Simmonds, 1996: An analysis of Antarctic sea-ice and extratropical cyclone associations. Int. J. Climatol., 16, 13151332, doi:10.1002/(SICI)1097-0088(199612)16:12<1315::AID-JOC92>3.0.CO;2-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, doi:10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harangozo, S. A., 2000: A search for ENSO teleconnections in the west Antarctic Peninsula climate in austral winter. Int. J. Climatol., 20, 663679, doi:10.1002/(SICI)1097-0088(200005)20:6<663::AID-JOC493>3.0.CO;2-I.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 9092, doi:10.1126/science.1058582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23, 391405, doi:10.1007/s00382-004-0433-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M., L. Landrum, Y. Kostov, and J. Marshall, 2017: Sensitivity of Antarctic sea ice to the southern annular mode in coupled climate models. Climate Dyn., doi:10.1007/s00382-016-3424-9, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Amer. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Irving, D., and I. Simmonds, 2015: A novel approach to diagnosing Southern Hemisphere planetary wave activity and its influence on regional climate variability. J. Climate, 28, 90419057, doi:10.1175/JCLI-D-15-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irving, D., and I. Simmonds, 2016: A new method for identifying the Pacific–South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, doi:10.1175/JCLI-D-15-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., and J. C. Comiso, 1989: Sea ice and oceanic processes on the Ross Sea continental shelf. J. Geophys. Res., 94, 18 19518 211, doi:10.1029/JC094iC12p18195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., R. A. Plumb, and M. Ting, 1989: Examples of the horizontal propagation of quasi-stationary waves. J. Atmos. Sci., 46, 28022811, doi:10.1175/1520-0469(1989)046<2802:EOTHPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988a: Indices of the Southern Hemisphere zonal wind. J. Climate, 1, 183194, doi:10.1175/1520-0442(1988)001<0183:IOTSHZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988b: Interannual variations in the Southern Hemisphere circulation. J. Climate, 1, 11771198, doi:10.1175/1520-0442(1988)001<1177:IVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, doi:10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and D. L. Hartmann, 2016: Antarctic sea ice response to weather and climate modes of variability. J. Climate, 29, 721741, doi:10.1175/JCLI-D-15-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, Y., J. Marshall, U. Hausmann, K. C. Armour, D. Ferreira, and M. M. Holland, 2017: Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dyn., 48, 15951609, doi:10.1007/s00382-016-3162-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and J. C. Comiso, 2002: Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Climate, 15, 487501, doi:10.1175/1520-0442(2002)015<0487:SOCASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledley, T. S., and Z. Huang, 1997: A possible ENSO signal in the Ross Sea. Geophys. Res. Lett., 24, 32533256, doi:10.1029/97GL03315.

  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109, C09005, doi:10.1029/2004JC002403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. Curry, and D. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, doi:10.1029/2003GL018732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res., 99, 25 81925 833, doi:10.1029/94JD02396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1996: Joint spatiotemporal modes of surface temperature and sea level pressure variability in the Northern Hemisphere during the last century. J. Climate, 9, 21372162, doi:10.1175/1520-0442(1996)009<2137:JSMOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1999: Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach. Advances in Geophysics, Vol. 41, Academic Press, 1–131.

    • Crossref
    • Export Citation
  • Martinson, D. G., and R. A. Iannuzzi, 2003: Spatial/temporal patterns in Weddell gyre characteristics and their relationship to global climate. J. Geophys. Res., 108, 8083, doi:10.1029/2000JC000538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1991: A reexamination of the mechanism of the semiannual oscillation in the Southern Hemisphere. J. Climate, 4, 911926, doi:10.1175/1520-0442(1991)004<0911:AROTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and C. Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, doi:10.1029/2005GL023680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and G. H. White, 1985: Teleconnections in the Southern Hemisphere. Mon. Wea. Rev., 113, 2237, doi:10.1175/1520-0493(1985)113<0022:TITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. E. Livezey, 1986: Tropical–extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114, 24882515, doi:10.1175/1520-0493(1986)114<2488:TEGHTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877902, doi:10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811598, doi:10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., H. Rashid, and I. Simmonds, 2012: Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, southern annular mode and ENSO. Climate Dyn., 38, 5773, doi:10.1007/s00382-011-1044-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2004: A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31, L23212, doi:10.1029/2004GL020365.

  • Rashid, H. A., and I. Simmonds, 2004: Eddy–zonal flow interactions associated with the Southern Hemisphere annular mode: Results from NCEP–DOE reanalysis and a quasi-linear model. J. Atmos. Sci., 61, 873888, doi:10.1175/1520-0469(2004)061<0873:EFIAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284, doi:10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rusciano, E., G. Budillon, G. Fusco, and G. Spezie, 2013: Evidence of atmosphere–sea ice–ocean coupling in the Terra Nova Bay polynya (Ross Sea–Antarctica). Cont. Shelf Res., 61–62, 112124, doi:10.1016/j.csr.2013.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979–2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and T. H. Jacka, 1995: Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J. Climate, 8, 637647, doi:10.1175/1520-0442(1995)008<0637:RBTIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and D. A. Jones, 1998: The mean structure and temporal variability of the semiannual oscillation in the southern extratropics. Int. J. Climatol., 18, 473504, doi:10.1002/(SICI)1097-0088(199804)18:5<473::AID-JOC266>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and J. C. King, 2004: Global and hemispheric climate variations affecting the Southern Ocean. Antarct. Sci., 16, 401413, doi:10.1017/S0954102004002226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., A. Rafter, T. Cowan, A. B. Watkins, and K. Keay, 2005: Large-scale vertical momentum, kinetic energy and moisture fluxes in the Antarctic sea-ice region. Bound.-Layer Meteor., 117, 149177, doi:10.1007/s10546-004-5939-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., S. McGregor, A. S. Taschetto, L. M. Ciasto, and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, doi:10.1175/JCLI-D-13-00615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. C., S. E. Stammerjohn, and K. S. Baker, 1996: Surface air temperature variations in the western Antarctic Peninsula region. Foundations for Ecological Research West of the Antarctic Peninsula, R. M. Ross, E. E. Hofmann and L. B. Quetin, Eds., Amer. Geophys. Union, 105–121.

    • Crossref
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462, doi:10.1038/nature07669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, T., K. I. Ohshima, T. Markus, D. J. Cavalieri, S. Nihashi, and N. Hirasawa, 2007: Estimation of thin ice thickness and detection of fast ice from SSM/I data in the Antarctic Ocean. J. Atmos. Oceanic Technol., 24, 17571772, doi:10.1175/JTECH2113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, T., K. I. Ohshima, and S. Nihashi, 2008: Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35, L07606, doi:10.1029/2007GL032903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teleti, P. R., and A. J. Luis, 2016: The role of the Southern Hemisphere polar cell on Antarctic sea ice variability. Int. J. Geosci., 7, 120134, doi:10.4236/ijg.2016.72010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 10551096, doi:10.1109/PROC.1982.12433.

  • Tourre, Y. M., B. Rajagopalan, and Y. Kushnir, 1999: Dominant patterns of climate variability in the Atlantic Ocean during the last 136 years. J. Climate, 12, 22852299, doi:10.1175/1520-0442(1999)012<2285:DPOCVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and L. Smith, 2005: The mass of the atmosphere: A constraint on global analyses. J. Climate, 18, 864875, doi:10.1175/JCLI-3299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, doi:10.1002/joc.965.

  • van Loon, H., 1967: The half-yearly oscillations in middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24, 472486, doi:10.1175/1520-0469(1967)024<0472:THYOIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, H., and J. C. Rogers, 1984: Interannual variations in the half-yearly cycle of pressure gradients and zonal wind at sea level on the Southern Hemisphere. Tellus, 36A, 7686, doi:10.1111/j.1600-0870.1984.tb00224.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, H., and D. J. Shea, 1987: The Southern Oscillation. Part VI: Anomalies of sea level pressure on the Southern Hemisphere and of Pacific sea surface temperature during the development of a warm event. Mon. Wea. Rev., 115, 370379, doi:10.1175/1520-0493(1987)115<0370:TSOPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Woert, M. L., 1999: Wintertime dynamics of the Terra Nova Bay polynya. J. Geophys. Res., 104, 77537769, doi:10.1029/1999JC900003.

  • Venegas, S. A., 2003: The Antarctic circumpolar wave: A combination of two signals? J. Climate, 16, 25092525, doi:10.1175/1520-0442(2003)016<2509:TACWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., and L. A. Mysak, 2000: Is there a dominant timescale of natural climate variability in the Arctic? J. Climate, 13, 34123434, doi:10.1175/1520-0442(2000)013<3412:ITADTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walland, D., and I. Simmonds, 1999: Baroclinicity, meridional temperature gradients, and the southern semiannual oscillation. J. Climate, 12, 33763382, doi:10.1175/1520-0442(1999)012<3376:BMTGAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watkins, A. B., and I. Simmonds, 1999: A late spring surge in the open water of the Antarctic sea ice pack. Geophys. Res. Lett., 26, 14811484, doi:10.1029/1999GL900292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. G. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature, 380, 699702, doi:10.1038/380699a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., C. Bao, Z. Xue, L. Zhang, and C. Hao, 1994: Interaction between Antarctic sea ice and ENSO events. Proc. NIPR Symp. on Polar Meteorology and Glaciology, National Institute of Polar Research, Vol. 8, 95–110.

  • Yuan, X., and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13, 16971717, doi:10.1175/1520-0442(2000)013<1697:ASIEVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., and D. G. Martinson, 2001: The Antarctic dipole and its predictability. Geophys. Res. Lett., 28, 36093612, doi:10.1029/2001GL012969.

  • Yuan, X., and C. Li, 2008: Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res., 113, C06S91, doi:10.1029/2006JC004067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., M. A. Cane, and D. G. Martinson, 1996: Climate variation—Cycling around the South Pole. Nature, 380, 673674, doi:10.1038/380673a0.

  • Yuan, X., D. G. Martinson, and W. T. Liu, 1999: Effect of air–sea–ice interaction on Southern Ocean subpolar storm distribution. J. Geophys. Res., 104, 19912007, doi:10.1029/98JD02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461466, doi:10.1038/nature06025.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1337 759 76
PDF Downloads 433 63 7