Assessing the Impact of Model Biases on the Projected Increase in Frequency of Extreme Positive Indian Ocean Dipole Events

Guojian Wang CSIRO Oceans and Atmosphere Flagship, Aspendale, Victoria, Australia, and Physical Oceanography Laboratory, Qingdao Collaborative Innovation Centre of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Guojian Wang in
Current site
Google Scholar
PubMed
Close
,
Wenju Cai CSIRO Oceans and Atmosphere Flagship, Aspendale, Victoria, Australia, and Physical Oceanography Laboratory, Qingdao Collaborative Innovation Centre of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Wenju Cai in
Current site
Google Scholar
PubMed
Close
, and
Agus Santoso ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Agus Santoso in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For many generations, models simulate an Indian Ocean dipole (IOD) that is overly large in amplitude. The possible impact of this systematic bias on climate projections, including a projected frequency increase in extreme positive IOD (pIOD) using a rainfall-based definition, has attracted attention. In particular, a recent study suggests that the increased frequency is an artifact of the overly large IOD amplitude. In contrast, here the opposite is found. Through intermodel ensemble regressions, the present study shows that models producing a high frequency in the present-day climate generate a small future frequency increase. The frequency is associated with the mean equatorial west-minus-east sea surface temperature (SST) gradient: the greater the gradient, the greater the frequency because it is easier to shift convection to the west, which characterizes an extreme pIOD. A greater present-day gradient is associated with a present-day shallower thermocline, lower SSTs, and lower rainfall in the eastern equatorial Indian Ocean (EEIO). Because there is an inherent limit for a maximum rainfall reduction and for the impact on surface cooling by a shallowing of an already shallow mean EEIO thermocline, there is a smaller increase in frequency in models with a shallower present-day EEIO thermocline. Given that a bias of overly shallow EEIO thermocline and overly low EEIO SSTs and rainfall is common in models, the future frequency increase should be underestimated, opposite to an implied overestimation resulting from the overly large IOD amplitude bias. Therefore, correcting the projected frequency from a single bias, without considering other biases that are present, is not appropriate and should be avoided.

Pacific Marine Environmental Laboratory Contribution Number 4427.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Guojian Wang, guojian.wang@csiro.au

Abstract

For many generations, models simulate an Indian Ocean dipole (IOD) that is overly large in amplitude. The possible impact of this systematic bias on climate projections, including a projected frequency increase in extreme positive IOD (pIOD) using a rainfall-based definition, has attracted attention. In particular, a recent study suggests that the increased frequency is an artifact of the overly large IOD amplitude. In contrast, here the opposite is found. Through intermodel ensemble regressions, the present study shows that models producing a high frequency in the present-day climate generate a small future frequency increase. The frequency is associated with the mean equatorial west-minus-east sea surface temperature (SST) gradient: the greater the gradient, the greater the frequency because it is easier to shift convection to the west, which characterizes an extreme pIOD. A greater present-day gradient is associated with a present-day shallower thermocline, lower SSTs, and lower rainfall in the eastern equatorial Indian Ocean (EEIO). Because there is an inherent limit for a maximum rainfall reduction and for the impact on surface cooling by a shallowing of an already shallow mean EEIO thermocline, there is a smaller increase in frequency in models with a shallower present-day EEIO thermocline. Given that a bias of overly shallow EEIO thermocline and overly low EEIO SSTs and rainfall is common in models, the future frequency increase should be underestimated, opposite to an implied overestimation resulting from the overly large IOD amplitude bias. Therefore, correcting the projected frequency from a single bias, without considering other biases that are present, is not appropriate and should be avoided.

Pacific Marine Environmental Laboratory Contribution Number 4427.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Guojian Wang, guojian.wang@csiro.au
Save
  • Abram, N. J., M. K. Gagan, M. T. McCulloch, J. Chappell, and W. S. Hantoro, 2003: Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science, 301, 952955, doi:10.1126/science.1083841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., A. Vidard, and D. Anderson, 2008: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev., 136, 30183034, doi:10.1175/2008MWR2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, doi:10.1175/JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 7494, doi:10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boe, J., A. Hall, and X. Qu, 2009: September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci., 2, 341343, doi:10.1038/ngeo467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2013: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J. Climate, 26, 669678, doi:10.1175/JCLI-D-12-00537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and M. Raupach, 2009: Positive Indian Ocean dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, doi:10.1029/2009GL039902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean dipole to greenhouse warming. Nat. Geosci., 6, 9991007, doi:10.1038/ngeo2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashock, Y. Masumoto, and T. Yamagata, 2014: Increased frequency of extreme Indian Ocean dipole events due to greenhouse warming. Nature, 510, 254258, doi:10.1038/nature13327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2006: Climate fluctuations of tropical coupled system: The role of ocean dynamics. J. Climate, 19, 51225174, doi:10.1175/JCLI3903.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., R. E. Chandler, P. M. Cox, J. M. Huthnance, J. Rougier, and D. B. Stephenson, 2012: Quantifying future climate change. Nat. Climate Change, 2, 403409, doi:10.1038/nclimate1414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341344, doi:10.1038/nature11882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555560, doi:10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emmanuel, S., 2000: Impact to lung health of haze from forest fires: The Singapore experience. Respirology, 5, 175182, doi:10.1046/j.1440-1843.2000.00247.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankenberg, E., D. McKee, and D. Thomas, 2005: Health consequences of forest fires in Indonesia. Demography, 42, 109129, doi:10.1353/dem.2005.0004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., M. Winton, and J. L. Sarmiento, 2014: Continued global warming after CO2 emissions stoppage. Nat. Climate Change, 4, 4044, doi:10.1038/nclimate2060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., T. Li, H. Lin, and J. S. Kug, 2008: Asymmetry of the Indian Ocean Dipole. Part I: Observational analysis. J. Climate, 21, 48344848, doi:10.1175/2008JCLI2222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2016: A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J. Climate, 29, 55895608, doi:10.1175/JCLI-D-15-0565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, B., W. Cai, and K. Walsh, 2014a: Nonlinear feedbacks associated with the Indian Ocean dipole and their response to global warming in the GFDL-ESM2M coupled climate model. J. Climate, 27, 39043919, doi:10.1175/JCLI-D-13-00527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, B., W. Cai, and K. Walsh, 2014b: The role of the SST-thermocline relationship in Indian Ocean dipole skewness and its response to global warming. Sci. Rep., 4, 6034, doi:10.1038/srep06034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ng, B., W. Cai, K. Walsh, and A. Santoso, 2015: Nonlinear processes reinforce extreme Indian Ocean dipole events. Sci. Rep., 5, 11697, doi:10.1038/srep11697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., K. F. Dewey, and R. R. Heim, 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc., 74, 16891696, doi:10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole in the tropical Indian Ocean. Nature, 401, 360363.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., H. Shiogama, H. Tatebe, M. Hayashi, M. Ishii, and M. Kimoto, 2014: Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Climate Change, 4, 893897, doi:10.1038/nclimate2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, E., and W. Cai, 2013: Realism of the Indian Ocean dipole in CMIP5 models: The implications for climate projections. J. Climate, 26, 66496659, doi:10.1175/JCLI-D-12-00807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenzel, S., P. M. Cox, V. Eyring, and P. Friedlingstein, 2014: Emergent constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system models. J. Geophys. Res. Biogeosci., 119, 794807, doi:10.1002/2013JG002591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and F. Wang, 2009: Revisiting the thermocline depth in the equatorial Pacific. J. Climate, 22, 38563863, doi:10.1175/2009JCLI2836.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1260 487 48
PDF Downloads 486 73 5