A Lagrangian Climatology of Wintertime Cold Air Outbreaks in the Irminger and Nordic Seas and Their Role in Shaping Air–Sea Heat Fluxes

Lukas Papritz Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Lukas Papritz in
Current site
Google Scholar
PubMed
Close
and
Thomas Spengler Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Thomas Spengler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the climatological characteristics of marine cold air outbreaks (CAOs) is of critical importance to constrain the processes determining the heat flux forcing of the high-latitude oceans. In this study, a comprehensive multidecadal climatology of wintertime CAO air masses is presented for the Irminger Sea and Nordic seas. To investigate the origin, transport pathways, and thermodynamic evolution of CAO air masses, a novel methodology based on kinematic trajectories is introduced.

The major conclusions are as follows: (i) The most intense CAOs occur as a result of Arctic outflows following Greenland’s eastern coast from the Fram Strait southward and west of Novaya Zemlya. Weak CAOs also originate in flow across the SST gradient associated with the Arctic Front separating the Greenland and Iceland Seas from the Norwegian Sea. A substantial fraction of Irminger CAO air masses originate in the Canadian Arctic and overflow southern Greenland. (ii) CAOs account for 60%–80% of the wintertime oceanic heat loss associated with few intense CAOs west of Svalbard and in the Greenland, Iceland, and Barents Seas and frequent weak CAOs in the Norwegian and Irminger Seas. (iii) The amount of sensible heat extracted by CAO air masses is set by their intensity and their pathway over the underlying SST distribution, whereas the amount of latent heat is additionally capped by the SST. (iv) Among all CAO air masses, those in the Greenland and Iceland Seas extract the most sensible heat from the ocean and undergo the most intense diabatic warming. Irminger Sea CAO air masses experience only moderate diabatic warming but pick up more moisture than the other CAO air masses.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0605.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Lukas Papritz, lukas.papritz@uib.no

Abstract

Understanding the climatological characteristics of marine cold air outbreaks (CAOs) is of critical importance to constrain the processes determining the heat flux forcing of the high-latitude oceans. In this study, a comprehensive multidecadal climatology of wintertime CAO air masses is presented for the Irminger Sea and Nordic seas. To investigate the origin, transport pathways, and thermodynamic evolution of CAO air masses, a novel methodology based on kinematic trajectories is introduced.

The major conclusions are as follows: (i) The most intense CAOs occur as a result of Arctic outflows following Greenland’s eastern coast from the Fram Strait southward and west of Novaya Zemlya. Weak CAOs also originate in flow across the SST gradient associated with the Arctic Front separating the Greenland and Iceland Seas from the Norwegian Sea. A substantial fraction of Irminger CAO air masses originate in the Canadian Arctic and overflow southern Greenland. (ii) CAOs account for 60%–80% of the wintertime oceanic heat loss associated with few intense CAOs west of Svalbard and in the Greenland, Iceland, and Barents Seas and frequent weak CAOs in the Norwegian and Irminger Seas. (iii) The amount of sensible heat extracted by CAO air masses is set by their intensity and their pathway over the underlying SST distribution, whereas the amount of latent heat is additionally capped by the SST. (iv) Among all CAO air masses, those in the Greenland and Iceland Seas extract the most sensible heat from the ocean and undergo the most intense diabatic warming. Irminger Sea CAO air masses experience only moderate diabatic warming but pick up more moisture than the other CAO air masses.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0605.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Lukas Papritz, lukas.papritz@uib.no

Supplementary Materials

    • Supplemental Materials (PDF 629.59 KB)
Save
  • Bieli, M., S. Pfahl, and H. Wernli, 2015: A Lagrangian investigation of hot and cold extremes in Europe. Quart. J. Roy. Meteor. Soc., 141, 98108, doi:10.1002/qj.2339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and S. L. Gray, 2008: An objective climatology of the dynamical forcing of polar lows in the Nordic seas. Int. J. Climatol., 28, 19031919, doi:10.1002/joc.1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1996: Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Bound.-Layer Meteor., 80, 109125, doi:10.1007/BF00119014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1997: Boundary layer mass, water, and heat budgets in wintertime cold-air outbreaks from the Arctic sea ice. Mon. Wea. Rev., 125, 18241837, doi:10.1175/1520-0493(1997)125<1824:BLMWAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1979: How a severe winter impacts on individuals. Bull. Amer. Meteor. Soc., 60, 110114, doi:10.1175/1520-0477(1979)060<0110:HASWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claud, C., B. Duchiron, and P. Terray, 2007: Associations between large-scale atmospheric circulation and polar low developments over the North Atlantic during winters. J. Geophys. Res., 112, D12101, doi:10.1029/2006JD008251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R., J. Lazier, J. Meincke, P. Rhines, and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241295, doi:10.1016/S0079-6611(97)00002-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A, 728748, doi:10.1034/j.1600-0870.1996.00014.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., and I. A. Renfrew, 2016: The causes of Foehn warming in the lee of mountains. Bull. Amer. Meteor. Soc., 97, 455466, doi:10.1175/BAMS-D-14-00194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, J., S. Mason, and C. Jakob, 2016: The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate, 29, 19992014, doi:10.1175/JCLI-D-15-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2010: Total matrix intercomparison: A method for determining the geometry of water-mass pathways. J. Phys. Oceanogr., 40, 17101728, doi:10.1175/2010JPO4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hann, J., 1866: Zur Frage über den Ursprung des Föhns. Z. Österr Ges. Meteor., 1, 257263.

  • Harden, B. E., I. A. Renfrew, and G. N. Petersen, 2011: A climatology of wintertime barrier winds off southeast Greenland. J. Climate, 24, 47014717, doi:10.1175/2011JCLI4113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., I. A. Renfrew, and G. N. Petersen, 2015: Meteorological buoy observations from the central Iceland Sea. J. Geophys. Res. Atmos., 120, 31993208, doi:10.1002/2014JD022584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., and Coauthors, 2016: Upstream sources of the Denmark Strait overflow: Observations from a high-resolution mooring array. Deep-Sea Res. I, 112, 94112, doi:10.1016/j.dsr.2016.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinemann, G., and T. Klein, 2002: Modelling and observations of the katabatic flow dynamics over Greenland. Tellus, 54A, 542554, doi:10.1034/j.1600-0870.2002.201401.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. Academic Press, 532 pp.

    • Crossref
    • Export Citation
  • Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 22302243, doi:10.1175/JAS-D-13-058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jónsson, S., and H. Valdimarsson, 2004: A new path for the Denmark Strait overflow water from the Iceland Sea to Denmark Strait. Geophys. Res. Lett., 31, L03305, doi:10.1029/2003GL019214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2008: A QuikSCAT climatology of ocean surface winds in the Nordic seas: Identification of features and comparison with the NCEP/NCAR reanalysis. J. Geophys. Res., 113, D11106, doi:10.1029/2007JD008918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2011: A global climatology of favourable conditions for polar lows. Quart. J. Roy. Meteor. Soc., 137, 17491761, doi:10.1002/qj.888.

  • Kolstad, E. W., and T. J. Bracegirdle, 2008: Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dyn., 30, 871885, doi:10.1007/s00382-007-0331-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. J. Bracegirdle, and I. A. Seierstad, 2009: Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation. Climate Dyn., 33, 187197, doi:10.1007/s00382-008-0431-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macias Fauria, M. M., A. Grinsted, S. Helama, J. Moore, M. Timonen, T. Martma, E. Isaksson, and M. Eronen, 2010: Unprecedented low twentieth century winter sea ice extent in the western Nordic seas since A.D. 1200. Climate Dyn., 34, 781795, doi:10.1007/s00382-009-0610-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I, 43, 769806, doi:10.1016/0967-0637(96)00037-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18, 37133725, doi:10.1175/JCLI3455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., I. A. Renfrew, and R. S. Pickart, 2012: Spatial distribution of air-sea heat fluxes over the sub-polar North-Atlantic Ocean. Geophys. Res. Lett., 39, L18806, doi:10.1029/2012GL053097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., K. Våge, R. S. Pickart, and I. A. Renfrew, 2015: Decreasing intensity of open-ocean convection in the Greenland and Iceland seas. Nat. Climate Change, 5, 877882, doi:10.1038/nclimate2688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nansen, F., 1912: Das Bodenwasser und die Abkühlung des Meeres. Int. Rev. Gesamten Hydrobiol. Hydrograph., 5, 142, doi:10.1002/iroh.19120050102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noer, G., Ø. Saetra, T. Lien, and Y. Gusdal, 2011: A climatological study of polar lows in the Nordic Seas. Quart. J. Roy. Meteor. Soc., 137, 17621772, doi:10.1002/qj.846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oltmanns, M., F. Straneo, G. W. K. Moore, and S. H. Mernild, 2014: Strong downslope wind events in Ammassalik, southeast Greenland. J. Climate, 27, 977993, doi:10.1175/JCLI-D-13-00067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Outten, S. D., I. A. Renfrew, and G. W. K. Moore, 2009: An easterly tip jet off Cape Farewell, Greenland. II: Simulations and dynamics. Quart. J. Roy. Meteor. Soc., 135, 19341949, doi:10.1002/qj.531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and T. Spengler, 2015: Climatological analysis of the slope of isentropic surfaces and its tendencies over the North Atlantic. Quart. J. Roy. Meteor. Soc., 141, 32263238, doi:10.1002/qj.2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, doi:10.1175/JCLI-D-14-00482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., H. Olafsson, and J. E. Kristjansson, 2003: Flow in the lee of idealized mountains and Greenland. J. Atmos. Sci., 60, 21832195, doi:10.1175/1520-0469(2003)060<2183:FITLOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., I. A. Renfrew, and G. W. K. Moore, 2009: An overview of barrier winds off southeastern Greenland during the Greenland flow distortion experiment. Quart. J. Roy. Meteor. Soc., 135, 19501967, doi:10.1002/qj.455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

    • Crossref
    • Export Citation
  • Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127, 23792394, doi:10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., S. D. Outten, and G. W. K. Moore, 2009a: An easterly tip jet off Cape Farewell, Greenland. I: Aircraft observations. Quart. J. Roy. Meteor. Soc., 135, 19191933, doi:10.1002/qj.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. N. Petersen, D. A. J. Sproson, G. W. K. Moore, H. Adiwidjaja, S. Zhang, and R. North, 2009b: A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds. Quart. J. Roy. Meteor. Soc., 135, 20462066, doi:10.1002/qj.444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richner, H., and P. Hächler, 2013 : Understanding and forecasting Alpine foehn. Mountain Weather Research and Forecasting, F. Chow, S. De Wekker, and B. Snyder, Eds., Springer, 219–260.

    • Crossref
    • Export Citation
  • Segtnan, O. H., T. Furevik, and A. D. Jenkins, 2011: Heat and freshwater budgets of the Nordic seas computed from atmospheric reanalysis and ocean observations. J. Geophys. Res., 116, C11003, doi:10.1029/2011JC006939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., L. S. Fedor, and T. Hampel, 1987: Research aircraft measurements of a polar low over the Norwegian Sea. Tellus, 39A, 272306, doi:10.1111/j.1600-0870.1987.tb00309.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skeie, P., and S. Grønås, 2000: Strongly stratified easterly flows across Spitsbergen. Tellus, 52A, 473486, doi:10.1034/j.1600-0870.2000.01075.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2001: Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr., 31, 810826, doi:10.1175/1520-0485(2001)031<0810:WDDWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—version 2.0. Geosci. Model Dev., 8, 18931943, doi:10.5194/gmdd-8-1893-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swift, J. H., and K. Aagaard, 1981: Seasonal transitions and water mass formation in the Iceland and Greenland seas. Deep-Sea Res., 28A, 11071129, doi:10.1016/0198-0149(81)90050-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swift, J. H., K. Aagaard, and S.-A. Malmberg, 1980: The contribution of the Denmark Strait overflow to the deep North Atlantic. Deep-Sea Res., 27A, 2942, doi:10.1016/0198-0149(80)90070-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., 1996: North Atlantic circulation and variability, reviewed for the CNLS conference. Physica D, 98, 625646, doi:10.1016/0167-2789(96)00123-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terpstra, A., C. Michel, and T. Spengler, 2016: Forward and reverse shear environments during polar low genesis over the northeast Atlantic. Mon. Wea. Rev., 144, 13411354, doi:10.1175/MWR-D-15-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., T. Spengler, H. C. Davies, and R. S. Pickart, 2009: Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40. Quart. J. Roy. Meteor. Soc., 135, 19992011, doi:10.1002/qj.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, H. Valdimarsson, S. Jónsson, D. J. Torres, S. Østerhus, and T. Eldevik, 2011: Significant role of the north Icelandic jet in the formation of Denmark Strait overflow water. Nat. Geosci., 4, 723727, doi:10.1038/ngeo1234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, G. W. K. Moore, H. Valdimarsson, D. J. Torres, S. Y. Erofeeva, and J. E. Ø. Nilsen, 2013: Revised circulation scheme north of Denmark Strait. Deep-Sea Res. I, 79, 2039, doi:10.1016/j.dsr.2013.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., G. W. K. Moore, S. Jónsson, and H. Valdimarsson, 2015: Water mass transformation in the Iceland Sea. Deep-Sea Res. I, 101, 98109, doi:10.1016/j.dsr.2015.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wacker, U., K. V. Jayaraman Potty, C. Lüpkes, J. Hartmann, and M. Raschendorfer, 2005: A case study on a polar cold air outbreak over Fram Strait using a mesoscale weather prediction model. Bound.-Layer Meteor., 117, 301336, doi:10.1007/s10546-005-2189-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., A. S. Philips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, doi:10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2337 837 66
PDF Downloads 1779 340 31