Radiative Effects of Stratospheric Seasonal Cycles in the Tropical Upper Troposphere and Lower Stratosphere

Daniel M. Gilford Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Daniel M. Gilford in
Current site
Google Scholar
PubMed
Close
and
Susan Solomon Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Susan Solomon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Water vapor and ozone are powerful radiative constituents in the tropical lower stratosphere, impacting the local heating budget and nonlocally forcing the troposphere below. Their near-tropopause seasonal cycle structures imply associated “radiative seasonal cycles” in heating rates that could affect the amplitude and phase of the local temperature seasonal cycle. Overlying stratospheric seasonal cycles of water vapor and ozone could also play a role in the lower stratosphere and upper troposphere heat budgets through nonlocal propagation of radiation. Previous studies suggest that the tropical lower stratospheric ozone seasonal cycle radiatively amplifies the local temperature seasonal cycle by up to 35%, while water vapor is thought to have a damping effect an order of magnitude smaller. This study uses Aura Microwave Limb Sounder observations and an offline radiative transfer model to examine ozone, water vapor, and temperature seasonal cycles and their radiative linkages in the lower stratosphere and upper troposphere. Radiative sensitivities to ozone and water vapor vertical structures are explicitly calculated, which has not been previously done in a seasonal cycle context. Results show that the water vapor radiative seasonal cycle in the lower stratosphere is not sensitive to the overlying water vapor structure. In contrast, about one-third of ozone’s radiative seasonal cycle amplitude at 85 hPa is associated with longwave emission above 85 hPa. Ozone’s radiative effects are not spatially homogenous: for example, the Northern Hemisphere tropics have a seasonal cycle of radiative temperature adjustments with an amplitude 0.8 K larger than the Southern Hemisphere tropics.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0633.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Daniel M. Gilford, dgilford@mit.edu

Abstract

Water vapor and ozone are powerful radiative constituents in the tropical lower stratosphere, impacting the local heating budget and nonlocally forcing the troposphere below. Their near-tropopause seasonal cycle structures imply associated “radiative seasonal cycles” in heating rates that could affect the amplitude and phase of the local temperature seasonal cycle. Overlying stratospheric seasonal cycles of water vapor and ozone could also play a role in the lower stratosphere and upper troposphere heat budgets through nonlocal propagation of radiation. Previous studies suggest that the tropical lower stratospheric ozone seasonal cycle radiatively amplifies the local temperature seasonal cycle by up to 35%, while water vapor is thought to have a damping effect an order of magnitude smaller. This study uses Aura Microwave Limb Sounder observations and an offline radiative transfer model to examine ozone, water vapor, and temperature seasonal cycles and their radiative linkages in the lower stratosphere and upper troposphere. Radiative sensitivities to ozone and water vapor vertical structures are explicitly calculated, which has not been previously done in a seasonal cycle context. Results show that the water vapor radiative seasonal cycle in the lower stratosphere is not sensitive to the overlying water vapor structure. In contrast, about one-third of ozone’s radiative seasonal cycle amplitude at 85 hPa is associated with longwave emission above 85 hPa. Ozone’s radiative effects are not spatially homogenous: for example, the Northern Hemisphere tropics have a seasonal cycle of radiative temperature adjustments with an amplitude 0.8 K larger than the Southern Hemisphere tropics.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0633.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Daniel M. Gilford, dgilford@mit.edu

Supplementary Materials

    • Supplemental Materials (DOCX 136.64 KB)
Save
  • Abalos, M., W. J. Randel, and E. Serrano, 2012: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere. Atmos. Chem. Phys., 12, 11 50511 517, doi:10.5194/acp-12-11505-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abalos, M., W. J. Randel, D. E. Kinnison, and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10 59110 607, doi:10.5194/acp-13-10591-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

  • Brasseur, G., and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. Springer, 452 pp.

    • Crossref
    • Export Citation
  • Chae, J. H., and S. C. Sherwood, 2007: Annual temperature cycle of the tropical tropopause: A simple model study. J. Geophys. Res., 112, D19111, doi:10.1029/2006JD007956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., 1995: Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res., 100, 16 66116 673, doi:10.1029/95JD01264.

  • Conley, A. J., J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl, 2013: PORT, a CESM tool for the diagnosis of radiative forcing. Geosci. Model Dev., 6, 469476, doi:10.5194/gmd-6-469-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, doi:10.1073/pnas.1310344110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and Coauthors, 2016: Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century. Geophys. Res. Lett., 43, 23232329, doi:10.1002/2016GL067991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 22882301, doi:10.1175/JCLI-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folkins, I., P. Bernath, C. Boone, G. Lesins, N. Livesey, A. M. Thompson, K. Walker, and J. C. Witte, 2006: Seasonal cycles of O3, CO, and convective outflow at the tropical tropopause. Geophys. Res. Lett., 33, L16802, doi:10.1029/2006GL026602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, doi:10.1029/1999GL010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., R. S. Freckleton, and K. P. Shine, 1997: On aspects of the concept of radiative forcing. Climate Dyn., 13, 547560, doi:10.1007/s003820050182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., G. Bodeker, R. Schofield, S. Solomon, and D. Thompson, 2007: Effects of ozone cooling in the tropical lower stratosphere and upper troposphere. Geophys. Res. Lett., 34, L23813, doi:10.1029/2007GL031994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freie Universität Berlin, 2016: The Quasi-Biennial Oscillation (QBO) data series. Institute of Meteorology, Freie Universität Berlin, accessed 3 June 2015. [Available online at http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/.]

  • Fu, Q., S. Solomon, and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 26432653, doi:10.5194/acp-10-2643-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Lin, S. Solomon, and D. L. Hartmann, 2015: Observational evidence of strengthening of the Brewer–Dobson circulation since 1980. J. Geophys. Res. Atmos., 120, 10 21410 228, doi:10.1002/2015JD023657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, doi:10.1029/2005JD006019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and Q. Fu, 2006: Impact of clouds on radiative heating rates in the tropical lower stratosphere. J. Geophys. Res., 111, D23202, doi:10.1029/2006JD007273.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, doi:10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009a: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., B. Legras, A. Beljaars, J.-J. Morcrette, A. Simmons, A. M. Tompkins, and S. Uppala, 2009b: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses. Quart. J. Roy. Meteor. Soc., 135, 2137, doi:10.1002/qj.361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., P. H. Haynes, and P. M. Forster, 2011: The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, doi:10.5194/acp-11-3701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., and Coauthors, 2014: Stratospheric ozone trends and variability as seen by SCIAMACHY during the last decade. Atmos. Chem. Phys., 14, 831846, doi:10.5194/acp-14-831-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. M. de F. Forster, M. Fujiwara, Q. Fu, H. Vömel, L. K. Gohar, C. Johanson, and M. Ammerman, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, D07103, doi:10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Gilford, D. M., S. Solomon, and R. W. Portmann, 2016: Radiative impacts of the 2011 abrupt drops in water vapor and ozone in the tropical tropopause layer. J. Climate, 29, 595612, doi:10.1175/JCLI-D-15-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, doi:10.1175/JAS-D-12-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., D. W. J. Thompson, and P. M. Forster, 2009: On the role of radiative processes in stratosphere–troposphere coupling. J. Climate, 22, 41544161, doi:10.1175/2009JCLI2756.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972, doi:10.1029/2000GL012833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2013: SPARC data initiative: Comparison of water vapor climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 11 82411 846, doi:10.1002/jgrd.50752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, I., 1980: Observational evidence of the semiannual oscillation in the tropical middle atmosphere—A review. Pure Appl. Geophys., 118, 217238, doi:10.1007/BF01586452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., and S.-W. Son, 2012: Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J. Climate, 25, 53435360, doi:10.1175/JCLI-D-11-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konopka, P., J.-U. Grooß, G. Günther, F. Ploeger, R. Pommrich, R. Müller, and N. Livesey, 2010: Annual cycle of ozone at and above the tropical tropopause: Observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Atmos. Chem. Phys., 10, 121132, doi:10.5194/acp-10-121-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. Zipser, T. Garrett, J. H. Jiang, and H. Su, 2007: How do the water vapor and carbon monoxide “tape recorders” start near the tropical tropopause? Geophys. Res. Lett., 34, L09804, doi:10.1029/2006GL029234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2011: Version 3.3 level 2 data quality and description document. JPL Doc. D-33509, Jet Propulsion Laboratory, Pasadena, CA, 156 pp. [Available online at http://mls.jpl.nasa.gov/data/v3-3_data_quality_document.pdf.]

  • Maeda, K., 1987: Annual and semiannual oscillations of stratospheric ozone. Pure Appl. Geophys., 125, 147165, doi:10.1007/BF00878619.

  • Maycock, A. C., K. P. Shine, and M. M. Joshi, 2011: The temperature response to stratospheric water vapour changes. Quart. J. Roy. Meteor. Soc., 137, 10701082, doi:10.1002/qj.822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., M. M. Joshi, K. P. Shine, S. M. Davis, and K. H. Rosenlof, 2014: The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years. Quart. J. Roy. Meteor. Soc., 140, 21762185, doi:10.1002/qj.2287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. C. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540, doi:10.1175/2008JCLI2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, A., P. Hitchcock, and P. Haynes, 2016: The double peak in upwelling and diabatic heating in the tropical lower stratosphere. J. Atmos. Sci., 73, 18891901, doi:10.1175/JAS-D-15-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, doi:10.1029/95JD03422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., T. J. Dunkerton, M. E. McIntyre, E. A. Ray, P. H. Haynes, and J. M. Russell III, 1998: Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res., 103, 86518666, doi:10.1029/98JD00203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2014: EOS Microwave Limb Sounder (MLS) Level 2 version 3.3. Subset: Daily, 2005–2013, Goddard Earth Sciences Data and Information Services Center, accessed 10 November 2014. [Available online at https://disc.sci.gsfc.nasa.gov/Aura/data-holdings/MLS.]

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp. [Available online at www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.]

  • Newman, P. A., and J. E. Rosenfield, 1997: Stratospheric thermal damping times. Geophys. Res. Lett., 24, 433436, doi:10.1029/96GL03720.

  • Perliski, L. M., S. Solomon, and J. London, 1989: On the interpretation of seasonal variations of stratospheric ozone. Planet. Space Sci., 37, 15271538, doi:10.1016/0032-0633(89)90143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ploeger, F., and Coauthors, 2011: Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL). Atmos. Chem. Phys., 11, 407419, doi:10.5194/acp-11-407-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ploeger, F., and Coauthors, 2012: Horizontal transport affecting trace gas seasonality in the Tropical Tropopause Layer (TTL). J. Geophys. Res., 117, D09303, doi:10.1029/2011JD017267.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and S. Solomon, 2012: The signature of ozone depletion on tropical temperature trends, as revealed by their seasonal cycle in model integrations with single forcings. J. Geophys. Res., 117, D17102, doi:10.1029/2012JD017719.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and R. E. Dickinson, 1979: The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system. J. Atmos. Sci., 36, 10841104, doi:10.1175/1520-0469(1979)036<1084:TROSOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 2010: Variability and trends in stratospheric temperature and water vapor. The Stratosphere: Dynamics, Transport, and Chemistry, L. M. Polvani, A. H. Sobel, and D. W. Waugh, Eds., Amer. Geophys. Union, doi:10.1002/9781118666630.ch7.

    • Crossref
    • Export Citation
  • Randel, W. J., and F. Wu, 2015: Variability of zonal mean tropical temperatures derived from a decade of GPS radio occultation data. J. Atmos. Sci., 72, 12611275, doi:10.1175/JAS-D-14-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002a: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, doi:10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and R. Stolarski, 2002b: Changes in column ozone correlated with the stratospheric EP flux. J. Meteor. Soc. Japan, 80, 849862, doi:10.2151/jmsj.80.849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and W. R. Rios, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024, doi:10.1029/2002JD002595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster, 2006: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation. J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., M. Park, F. Wu, and N. Livesey, 2007: A large annual cycle in ozone above the tropical tropopause linked to the Brewer–Dobson circulation. J. Atmos. Sci., 64, 44794488, doi:10.1175/2007JAS2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1962: Some features of the annual temperature regime in the tropical stratosphere. Mon. Wea. Rev., 90, 211215, doi:10.1175/1520-0493(1962)090<0211:SFOTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and C. L. Vlcek, 1969: The annual temperature variation in the lower tropical stratosphere. J. Atmos. Sci., 26, 163167, doi:10.1175/1520-0469(1969)026<0163:TATVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, G. C., 1994: Seasonal and interannual temperature variations in the tropical stratosphere. J. Geophys. Res., 99, 18 92318 932, doi:10.1029/94JD01830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenlof, K., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191, doi:10.1029/94JD03122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and A. E. Dessler, 2011: Dehydration of the stratosphere. Atmos. Chem. Phys., 11, 84338446, doi:10.5194/acp-11-8433-2011.

  • Schoeberl, M. R., B. N. Duncan, A. R. Douglass, J. Waters, N. Livesey, W. Read, and M. Filipiak, 2006: The carbon monoxide tape recorder. Geophys. Res. Lett., 33, L12811, doi:10.1029/2006GL026178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and Coauthors, 2008: QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations. J. Geophys. Res., 113, D05301, doi:10.1029/2007JD008678.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., D. W. Waugh, L. Wang, L. D. Oman, A. R. Douglass, and P. A. Newman, 2014: Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. J. Geophys. Res. Atmos., 119, 61966206, doi:10.1002/2013JD021294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuber, N., M. Ponater, and R. Sausen, 2001: Is the climate sensitivity of ozone perturbations enhanced by stratospheric water vapor feedback? Geophys. Res. Lett., 28, 28872890, doi:10.1029/2001GL013000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., and Coauthors, 2013: SPARC data initiative: A comparison of ozone climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 12 22912 247, doi:10.1002/2013JD019877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueyama, R., and J. M. Wallace, 2010: To what extent does high-latitude wave forcing drive tropical upwelling in the Brewer–Dobson circulation? J. Atmos. Sci., 67, 12321246, doi:10.1175/2009JAS3216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., H. Su, J. H. Jiang, N. J. Livesey, M. L. Santee, L. Froidevaux, W. G. Read, and J. Anderson, 2016: The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model. Climate Dyn., doi:10.1007/s00382-016-3231-3.

    • Search Google Scholar
    • Export Citation
  • Wright, J. S., and S. Fueglistaler, 2013: Large differences in the diabatic heat budget of the tropical UTLS in reanalyses. Atmos. Chem. Phys., 13, 95659576, doi:10.5194/acp-13-9565-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169174, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 842 392 28
PDF Downloads 387 59 13