Influence of the Arctic Oscillation on the Vertical Distribution of Wintertime Ozone in the Stratosphere and Upper Troposphere over the Northern Hemisphere

Jiankai Zhang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jiankai Zhang in
Current site
Google Scholar
PubMed
Close
,
Fei Xie State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Fei Xie in
Current site
Google Scholar
PubMed
Close
,
Wenshou Tian Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Wenshou Tian in
Current site
Google Scholar
PubMed
Close
,
Yuanyuan Han Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yuanyuan Han in
Current site
Google Scholar
PubMed
Close
,
Kequan Zhang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Kequan Zhang in
Current site
Google Scholar
PubMed
Close
,
Yulei Qi School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

Search for other papers by Yulei Qi in
Current site
Google Scholar
PubMed
Close
,
Martyn Chipperfield National Center for Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Martyn Chipperfield in
Current site
Google Scholar
PubMed
Close
,
Wuhu Feng National Center for Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
School of Chemistry, University of Leeds, Leeds, United Kingdom

Search for other papers by Wuhu Feng in
Current site
Google Scholar
PubMed
Close
,
Jinlong Huang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jinlong Huang in
Current site
Google Scholar
PubMed
Close
, and
Jianchuan Shu Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, China

Search for other papers by Jianchuan Shu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0°–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa; 70°–90°N), Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 70°–90°N), and midlatitude UTLS (70–300 hPa, 30°–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0° and 30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Fei Xie, xiefei@bnu.edu.cn

Abstract

The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0°–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa; 70°–90°N), Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 70°–90°N), and midlatitude UTLS (70–300 hPa, 30°–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0° and 30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Fei Xie, xiefei@bnu.edu.cn
Save
  • Abalos, M., W. J. Randel, D. E. Kinnison, and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10 59110 607, doi:10.5194/acp-13-10591-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., I. Esau, I. V. Polyakov, S. J. Byam, and S. Sorokina, 2012: Vertical structure of recent Arctic warming from observed data and reanalysis products. Climatic Change, 111, 215239, doi:10.1007/s10584-011-0192-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, doi:10.1038/nature11097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 19691978, doi:10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Elsevier, 489 pp.

  • Angell, J. K., and J. Korshover, 1973: Quasi-biennial and long-term fluctuations in total ozone. Mon. Wea. Rev., 101, 426443, doi:10.1175/1520-0493(1973)101<0426:QALFIT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., A. K. Weiss, and J. Staehelin, 2000: North Atlantic Oscillation modulates total ozone winter trends. Geophys. Res. Lett., 27, 11311134, doi:10.1029/1999GL010854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J., and R. J. Wilson, 2006: Ensemble simulations of the decline and recovery of stratospheric ozone. J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2010: Decline and recovery of total column ozone using a multimodel time series analysis. J. Geophys. Res., 115, D00M10, doi:10.1029/2010JD013857.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhartia, P., and Coauthors, 2013: Solar backscatter UV (SBUV) total ozone and profile algorithm. Atmos. Meas. Tech., 6, 25332548, doi:10.5194/amt-6-2533-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Memo. NASA/TM-2015-104606/Vol. 43, 145 pp. [Available online at http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/.]

  • Bowman, K. P., 1989: Global patterns of the quasi-biennial oscillation in total ozone. J. Atmos. Sci., 46, 33283343, doi:10.1175/1520-0469(1989)046<3328:GPOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and Coauthors, 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos. Chem. Phys., 9, 89358948, doi:10.5194/acp-9-8935-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandra, S., and R. D. McPeters, 1994: The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites. J. Geophys. Res., 99, 20 66520 671, doi:10.1029/94JD02010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chipperfield, M., 2006: New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments. Quart. J. Roy. Meteor. Soc., 132, 11791203, doi:10.1256/qj.05.51.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Creilson, J. K., J. Fishman, and A. E. Wozniak, 2005: Arctic Oscillation-induced variability in satellite-derived tropospheric ozone. Geophys. Res. Lett., 32, L14822, doi:10.1029/2005GL023016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degenstein, D. A., A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, 2009: Limb scatter ozone retrieval from 10 to 60 km using a multiplicative algebraic reconstruction technique. Atmos. Chem. Phys., 9, 65216529, doi:10.5194/acp-9-6521-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhomse, S. S., S. M. Weber, I. Wohltmann, M. Rex, and J. P. Burrows, 2006: On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003. Atmos. Chem. Phys., 6, 11651180, doi:10.5194/acp-6-1165-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhomse, S. S., M. P. Chipperfield, W. Feng, R. Hossaini, G. W. Mann, and M. L. Santee, 2015: Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3‐D model study. Geophys. Res. Lett., 42, 30383047, doi:10.1002/2015GL063052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., S. E. Strahan, L. D. Oman, and R. S. Stolarski, 2014: Understanding differences in chemistry climate model projections of stratospheric ozone. J. Geophys. Res. Atmos., 119, 49224939, doi:10.1002/2013JD021159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2010: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys., 10, 94519472, doi:10.5194/acp-10-9451-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, W., and Coauthors, 2005: Three-dimensional model study of the Antarctic ozone hole in 2002 and comparison with 2000. J. Atmos. Sci., 62, 822837, doi:10.1175/JAS-3335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, W., M. P. Chipperfield, S. Davies, P. von der Gathen, E. Kyrö, C. M. Volk, A. Ulanovsky, and G. Belyaev, 2007: Large chemical ozone loss in 2004/2005 Arctic winter/spring. Geophys. Res. Lett., 34, L09803, doi:10.1029/2006GL029098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, W., and Coauthors, 2011: Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005. Atmos. Chem. Phys., 11, 65596573, doi:10.5194/acp-11-6559-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frith, S., N. Kramarova, R. Stolarski, R. McPeters, P. Bhartia, and G. Labow, 2014: Recent changes in total column ozone based on the SBUV version 8.6 Merged Ozone Data Set. J. Geophys. Res. Atmos., 119, 97359751, doi:10.1002/2014JD021889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frossard, L., and Coauthors, 2013: On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes—Part 1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry. Atmos. Chem. Phys., 13, 147164, doi:10.5194/acp-13-147-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., K. Kita, and T. Ogawa, 1998: Stratosphere–troposphere exchange of ozone associated with the equatorial Kelvin wave as observed with ozonesondes and rawinsondes. J. Geophys. Res., 103, 19 17319 182, doi:10.1029/98JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hadjinicolaou, P., A. Jrrar, J. A. Pyle, and L. Bishop, 2002: The dynamically driven long-term trend in stratospheric ozone over northern middle latitudes. Quart. J. Roy. Meteor. Soc., 128, 13931412, doi:10.1002/qj.200212858301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, P. G., and J. F. Lamarque, 2007: Ozone source attribution and its modulation by the Arctic oscillation during the spring months. J. Geophys. Res., 112, D11303, doi:10.1029/2006JD007557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64, 19221940, doi:10.1175/JAS3927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofmann, D. J., and S. J. Oltmans, 1993: Anomalous Antarctic ozone during 1992: Evidence for Pinatubo volcanic aerosol effects. J. Geophys. Res., 98, 18 55518 561, doi:10.1029/93JD02092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, J. B., and C. T. McElroy, 1993: Evidence of large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262, 10321034, doi:10.1126/science.262.5136.1032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, B. M., and J. U. Grooss, 2000: Northern midlatitude stratospheric ozone dilution in spring modeled with simulated mixing. J. Geophys. Res., 105, 68856890, doi:10.1029/1999JD901076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., and P. G. Hess, 2004: Arctic Oscillation modulation of the Northern Hemisphere spring tropospheric ozone. Geophys. Res. Lett., 31, L06127, doi:10.1029/2003GL019116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., R. S. Stolarski, and P. A. Newman, 2009: Stratospheric ozone in the post-CFC era. Atmos. Chem. Phys., 9, 22072213, doi:10.5194/acp-9-2207-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., Y. V. Vikhliaev, P. A. Newman, S. Pawson, J. Perlwitz, D. W. Waugh, and A. R. Douglass, 2016: Impacts of interactive stratospheric chemistry on Antarctic and Southern Ocean climate change in the Goddard Earth Observing System, version 5 (GEOS-5). J. Climate, 29, 31993218, doi:10.1175/JCLI-D-15-0572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K.-F., and K.-K. Tung, 2014: Quasi-biennial oscillation and solar cycle influences on winter Arctic total ozone. J. Geophys. Res. Atmos., 119, 58235835, doi:10.1002/2013JD021065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, K.-F., B. Tian, D. E. Waliser, M. J. Schwartz, J. L. Neu, J. R. Worden, and Y. L. Yung, 2012: Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data. Atmos. Chem. Phys., 12, 425436, doi:10.5194/acp-12-425-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., Y. Liu, Z. Cai, S. Gao, D. , and E. Kyrölä, 2009: A Madden–Julian oscillation–triggered record ozone minimum over the Tibetan Plateau in December 2003 and its association with stratospheric “low-ozone pockets.” Geophys. Res. Lett., 36, L15830, doi:10.1029/2009GL039025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. J., D. B. A. Jones, J. R. Worden, D. Noone, M. Parrington, and J. Kar, 2009: Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. J. Geophys. Res., 114, D05304, doi:10.1029/2008JD010993.

    • Search Google Scholar
    • Export Citation
  • Liu, J. J., D. B. A. Jones, S. Zhang, and J. Kar, 2011: Influence of interannual variations in transport on summertime abundances of ozone over the Middle East. J. Geophys. Res., 116, D20310, doi:10.1029/2011JD016188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. J., and Coauthors, 2013: A global ozone climatology from ozone soundings via trajectory mapping: A stratospheric perspective. Atmos. Chem. Phys., 13, 11 44111 464, doi:10.5194/acp-13-11441-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N., and Coauthors, 2011: EOS MLS version 3.3 level 2 data quality and description document. Jet Propulsion Laboratory Tech. Rep. JPL D-33509, 162 pp.

  • Manney, G. L., and Coauthors, 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469475, doi:10.1038/nature10556.

  • McPeters, R. D., P. Bhartia, D. Haffner, G. J. Labow, and L. Flynn, 2013: The version 8.6 SBUV ozone data record: An overview. J. Geophys. Res. Atmos., 118, 80328039, doi:10.1002/jgrd.50597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monier, E., and B. C. Weare, 2011: Climatology and trends in the forcing of the stratospheric ozone transport. Atmos. Chem. Phys., 11, 63116323, doi:10.5194/acp-11-6311-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y., P. Simon, and D. Cariolle, 1995: Filamentation and layering of an idealized tracer by observed winds in the lower stratosphere. Geophys. Res. Lett., 22, 839842, doi:10.1029/95GL00389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2005: The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32, L06701, doi:10.1029/2004GL021752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91, 66716681, doi:10.1029/JD091iD06p06671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, N. Calvo, and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinsel, G. C., A. J. Miller, E. C. Weatherhead, L. E. Flynn, R. M. Nagatani, G. C. Tiao, and D. J. Wuebbles, 2005: Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res., 110, D16306, doi:10.1029/2004JD004662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, H. E., and Coauthors, 2013: On the relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes—Part 2: The effects of the El Niño/Southern Oscillation, volcanic eruptions and contributions of atmospheric dynamics and chemistry to long-term total ozone changes. Atmos. Chem. Phys., 13, 165179, doi:10.5194/acp-13-165-2013.

    • Search Google Scholar
    • Export Citation
  • Rieder, H. E., L. M. Polvani, and S. Solomon, 2014: Distinguishing the impacts of ozone depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends. Geophys. Res. Lett., 41, 26522660, doi:10.1002/2014GL059367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozanov, E. V., M. E. Schlesinger, N. G. Andronova, F. Yang, S. L. Malyshev, V. A. Zubov, T. A. Egorova, and B. Li, 2002: Climate/chemistry effects of the Pinatubo volcanic eruption simulated by the UIUC stratosphere/troposphere GCM with interactive photochemistry. J. Geophys. Res., 107, 4594, doi:10.1029/2001JD000974.

    • Search Google Scholar
    • Export Citation
  • Rozanov, E. V., M. Schraner, T. Egorova, A. Ohmura, M. Wild, W. Schmutz, and T. Peter, 2005: Solar signal in atmospheric ozone, temperature and dynamics simulated with CCM SOCOL in transient mode. Mem. Soc. Astron. Ital., 76, 876879.

    • Search Google Scholar
    • Export Citation
  • Schnadt, C., and M. Dameris, 2003: Relationship between North Atlantic Oscillation changes and stratospheric ozone recovery in the Northern Hemisphere in a chemistry–climate model. Geophys. Res. Lett., 30, 1487, doi:10.1029/2003GL017006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sioris, C. E., C. A. McLinden, V. E. Fioletov, C. Adams, J. M. Zawodny, A. E. Bourassa, C. Z. Roth, and D. A. Degenstein, 2014: Trend and variability in ozone in the tropical lower stratosphere over 2.5 solar cycles observed by SAGE II and OSIRIS. Atmos. Chem. Phys., 14, 34793496, doi:10.5194/acpd-13-16661-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. Garcia, and F. Stordal, 1985: Transport processes and ozone perturbations. J. Geophys. Res., 90, 12 98112 989, doi:10.1029/JD090iD07p12981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. W. Portmann, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, 1996: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res., 101, 67136727, doi:10.1029/95JD03353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., U. Köhler, H. Claude, M. Weber, J. P. Burrows, and R. J. van der A, 2011: Very high ozone columns at northern mid-latitudes in 2010. Geophys. Res. Lett., 38, L06803, doi:10.1029/2010GL046634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B. J., Y. L. Yung, D. E. Waliser, T. Tyranowski, L. Kuai, E. J. Fetzer, and F. W. Irion, 2007: Intraseasonal variations of the tropical total ozone and their connection to the Madden–Julian oscillation. Geophys. Res. Lett., 34, L08704, doi:10.1029/2007GL029451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, W., and M. P. Chipperfield, 2005: A new coupled chemistry–climate model for the stratosphere: The importance of coupling for future O3-climate predictions. Quart. J. Roy. Meteor. Soc., 131, 281303, doi:10.1256/qj.04.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, W., M. P. Chipperfield, and Q. Huang, 2008: Effects of the Tibetan Plateau on total column ozone distribution. Tellus, 60B, 622635, doi:10.1111/j.1600-0889.2008.00338.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Traub, W. A., K. W. Jucks, D. G. Johnson, and K. V. Chance, 1995: Subsidence of the Arctic stratosphere determined from thermal emission of hydrogen fluoride. J. Geophys. Res., 100, 11 26111 267, doi:10.1029/95JD00619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and H. Yang, 1988: Dynamic variability of column ozone. J. Geophys. Res., 93, 11 12311 128, doi:10.1029/JD093iD09p11123.

  • Tung, K. K., and H. Yang, 1994: Global QBO in circulation and ozone. Part II: A simple mechanistic model. J. Atmos. Sci., 51, 27082721, doi:10.1175/1520-0469(1994)051<2708:GQICAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2010: Madden–Julian oscillation in the tropical stratosphere. J. Geophys. Res., 115, D17113, doi:10.1029/2009JD013748.

  • Weiss, A. K., J. Staehelin, C. Appenzeller, and N. R. P. Harris, 2001: Chemical and dynamical contributions to ozone profile trends of the Payerne (Switzerland) balloon soundings. J. Geophys. Res., 106, 22 68522 694, doi:10.1029/2000JD000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2007: Scientific assessment of ozone depletion: 2006. World Meteorological Organization/United Nations Environment Programme Rep. 50, 572 pp.

  • WMO, 2011: Scientific assessment of ozone depletion: 2010. World Meteorological Organization/United Nations Environment Programme Rep. 52, 516 pp.

  • Xie, F., J. Li, W. Tian, J. Zhang, and J. Shu, 2014a: The impacts of two types of El Niño on global ozone variations in the last three decades. Adv. Atmos. Sci., 31, 11131126, doi:10.1007/s00376-013-3166-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, J. Zhang, and C. Sun, 2014b: The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ. Res. Lett., 9, 064020, doi:10.1088/1748-9326/9/6/064020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., and Coauthors, 2016: A connection from Arctic stratospheric ozone to El Niño–Southern Oscillation. Environ. Res. Lett., 11, 124026, doi:10.1088/1748-9326/11/12/124026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, F. Xie, H. Tian, J. Luo, J. Zhang, W. Liu, and S. Dhomse, 2014: Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring. Tellus, 66B, 23415, http://dx.doi.org/10.3402/tellusb.v66.23415.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, Z. Wang, F. Xie, and F. Wang, 2015a: The influence of ENSO on northern midlatitude ozone during the winter to spring transition. J. Climate, 28, 47744793, doi:10.1175/JCLI-D-14-00615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, F. Xie, Y. Li, F. Wang, J. Huang, and H. Tian, 2015b: Influence of the El Niño Southern Oscillation on the total ozone column and clear-sky ultraviolet radiation over China. Atmos. Environ., 120, 205216, doi:10.1016/j.atmosenv.2015.08.080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, M. P. Chipperfield, F. Xie, and J. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, doi:10.1038/nclimate3136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. L., Y. Liu, C. X. Liu, and V. F. Sofieva, 2015: Satellite measurements of the Madden–Julian oscillation in wintertime stratospheric ozone over the Tibetan Plateau and East Asia. Adv. Atmos. Sci., 32, 14811492, doi:10.1007/s00376-015-5005-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziemke, J. R., and S. Chandra, 1999: Seasonal and interannual variabilities in tropical tropospheric ozone. J. Geophys. Res., 104, 21 42521 442, doi:10.1029/1999JD900277.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1301 727 51
PDF Downloads 495 77 6