Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis

Krzysztof Wargan Science Systems and Applications Inc., Lanham, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Krzysztof Wargan in
Current site
Google Scholar
PubMed
Close
,
Gordon Labow Science Systems and Applications Inc., Lanham, and Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gordon Labow in
Current site
Google Scholar
PubMed
Close
,
Stacey Frith Science Systems and Applications Inc., Lanham, and Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Stacey Frith in
Current site
Google Scholar
PubMed
Close
,
Steven Pawson Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Steven Pawson in
Current site
Google Scholar
PubMed
Close
,
Nathaniel Livesey Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Nathaniel Livesey in
Current site
Google Scholar
PubMed
Close
, and
Gary Partyka Science Systems and Applications Inc., Lanham, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gary Partyka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to the present is described herein, and its quality is assessed. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft between January 1980 and September 2004: starting in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10% (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2% and 24.5%, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period; however, MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Krzysztof Wargan, krzysztof.wargan-1@nasa.gov

Abstract

The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to the present is described herein, and its quality is assessed. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft between January 1980 and September 2004: starting in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10% (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2% and 24.5%, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period; however, MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Krzysztof Wargan, krzysztof.wargan-1@nasa.gov
Save
  • Barath, F. T., and Coauthors, 1993: The Upper Atmosphere Research Satellite microwave limb sounder instrument. J. Geophys. Res., 98, 10 75110 762, doi:10.1029/93JD00798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bass, A. M., and R. J. Paur, 1985: The ultraviolet cross-sections of ozone: I. The measurements. Atmospheric Ozone, C. S. Zerefos and A. Ghazi, Eds., Springer Netherlands, 606–610, doi:10.1007/978-94-009-5313-0_120.

    • Crossref
    • Export Citation
  • Bhartia, P. K., and C. Wellemeyer, 2002: TOMS-V8 total O3 algorithm. OMI Algorithm Theoretical Basis Document, Vol. II, NASA Goddard Space Flight Center Tech. Doc. ATBD-OMI-02, 15–31. [Available online at http://eospso.nasa.gov/sites/default/files/atbd/ATBD-OMI-02.pdf.]

  • Bhartia, P. K., R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, and M. DeLand, 2013: Solar Backscatter UV (SBUV) total ozone and profile algorithm. Atmos. Meas. Tech., 6, 25332548, doi:10.5194/amt-6-2533-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. NASA Tech. Rep. Series on Global Modelling and Data Assimilation NASA/TM–2015-104606, Vol. 43, 145 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich803.pdf.]

  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75, 257288.

  • Cortesi, U., and Coauthors, 2007: Geophysical validation of MIPAS-ENVISAT operational ozone data. Atmos. Chem. Phys., 7, 48074867, doi:10.5194/acp-7-4807-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., K. Wargan, A. Molod, W. R. McCarty, and S. Pawson, 2016: Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J. Climate, 29, 53395354, doi:10.1175/JCLI-D-15-0809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damadeo, R. P., J. M. Zawodny, L. W. Thomason, and N. Iyer, 2013: SAGE version 7.0 algorithm: Application to SAGE II. Atmos. Meas. Tech., 6, 35393561, doi:10.5194/amt-6-3539-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damadeo, R. P., J. M. Zawodny, and L. W. Thomason, 2014: Reevaluation of stratospheric ozone trends from SAGE II data using a simultaneous temporal and spatial analysis. Atmos. Chem. Phys., 14, 13 45513 470, doi:10.5194/acp-14-13455-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daumont, M., J. Brion, J. Charbonnier, and J. Malicet, 1992: Ozone UV spectroscopy I: Absorption cross-sections at room temperature. J. Atmos. Chem., 15, 145155, doi:10.1007/BF00053756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., S. L. Taylor, L. K. Huang, and B. L. Fisher, 2012: Calibration of the SBUV version 8.6 ozone data product. Atmos. Meas. Tech., 5, 29512967, doi:10.5194/amt-5-2951-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dethof, A., and E. V. Hólm, 2004: Ozone assimilation in the ERA-40 reanalysis project. Quart. J. Roy. Meteor. Soc., 130, 28512872, doi:10.1256/qj.03.196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dragani, R., 2011: On the quality of the ERA-Interim ozone reanalyses: Comparisons with satellite data. Quart. J. Roy. Meteor. Soc., 137, 13121326, doi:10.1002/qj.821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H., and Coauthors, 2008: MIPAS: An instrument for atmospheric and climate research. Atmos. Chem. Phys., 8, 21512188, doi:10.5194/acp-8-2151-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleig, A. J., R. D. McPeters, P. K. Bhartia, B. M. Schlesinger, R. P. Cebula, K. F. Klenck, S. L. Taylor, and D. F. Heath, 1990: Nimbus 7 Solar Backscatter Ultraviolet (SBUV) ozone products user’s guide. NASA Ref. Publ. 1234, 130 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19900007911.pdf.]

  • Frith, S. M., N. A. Kramarova, R. S. Stolarski, R. D. McPeters, P. K. Bhartia, and G. J. Labow, 2014: Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set. J. Geophys. Res. Atmos., 119, 97359751, doi:10.1002/2014JD021889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froidevaux, L., and Coauthors, 2008: Validation of Aura Microwave Limb Sounder stratospheric ozone measurements. J. Geophys. Res., 113, D15S20, doi:10.1029/2007JD008771.

    • Search Google Scholar
    • Export Citation
  • Gleason, J. F., and R. D. McPeters, 1995: Corrections to the Nimbus 7 solar backscatter ultraviolet data in the “nonsync” period (February 1987 to June 1990). J. Geophys. Res., 100, 16 87316 877, doi:10.1029/95JD01530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Global Monitoring Division, 2016: NOAA/ESRL Project O-257-S, South Pole, Antarctica Balloon-Borne Ozonesonde Profile Measurement Program data. NOAA/ESRL, accessed January 2016. [Available online at http://www.esrl.noaa.gov/gmd/ozwv/ozsondes/spo.html.]

  • GMAO, 2015a: MERRA-2 inst3_3d_asm_Nv: 3d, 3-Hourly, Instantaneous, Model-Level, Assimilation, Assimilated Meteorological Fields V5.12.4. Goddard Space Flight Center Distributed Active Archive Center, accessed June 2016, doi:10.5067/WWQSXQ8IVFW8.

  • GMAO, 2015b: MERRA-2 inst1_2d_asm_Nx: 2d, 3-Hourly, Instantaneous, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4. Goddard Space Flight Center Distributed Active Archive Center, accessed June 2016, doi:10.5067/3Z173KIE2TPD.

    • Crossref
    • Export Citation
  • Herman, J. R., R. Hudson, R. McPeters, R. Stolarski, Z. Ahmad, X.-Y. Gu, S. Taylor, and C. Wellemeyer, 1991: A new self-calibration method applied to TOMS/SBUV backscattered ultraviolet data to determine long-term global ozone change. J. Geophys. Res., 96, 75317545, doi:10.1029/90JD02662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, D., and Coauthors, 2016: Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech., 9, 24972534, doi:10.5194/amt-9-2497-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, A., and Coauthors, 2013: The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys., 13, 40734109, doi:10.5194/acp-13-4073-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, A., and Coauthors, 2015: Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS. Atmos. Chem. Phys., 15, 52755303, doi:10.5194/acp-15-5275-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 368 pp.

    • Crossref
    • Export Citation
  • Kramarova, N., P. K. Bhartia, S. Frith, R. McPeters, and R. Stolarski, 2013a: Interpreting SBUV smoothing errors: An example using the quasi-biennial oscillation. Atmos. Meas. Tech., 6, 20892099, doi:10.5194/amt-6-2089-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kramarova, N., S. M. Frith, P. K. Bhartia, R. D. McPeters, S. L. Taylor, B. L. Fisher, G. J. Labow, and M. T. DeLand, 2013b: Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm. Atmos. Chem. Phys., 13, 68876905, doi:10.5194/acp-13-6887-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kyrölä, E., M. Laine, V. Sofieva, J. Tamminen, S.-M. Päivärinta, S. Tukiainen, J. Zawodny, and L. Thomason, 2013: Combined SAGE II–GOMOS ozone profile data set for 1984–2011 and trend analysis of the vertical distribution of ozone. Atmos. Chem. Phys., 13, 10 64510 658, doi:10.5194/acp-13-10645-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labow, G. J., R. D. McPeters, P. K. Bhartia, and N. Kramarova, 2013: A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network. J. Geophys. Res. Atmos., 118, 73707378, doi:10.1002/jgrd.50503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., and P. Schneider, 2014: Data assimilation: Making sense of Earth observations. Front. Environ. Sci., 2, 16, doi:10.3389/fenvs.2014.00016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., Q. Errera, R. Swinbank, and D. Fonteyn, 2007: Data assimilation of stratospheric constituents: A review. Atmos. Chem. Phys., 7, 57455773, doi:10.5194/acp-7-5745-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lefever, K., and Coauthors, 2015: Copernicus stratospheric ozone service, 2009–2012: Validation, system intercomparison and roles of input data sets. Atmos. Chem. Phys., 15, 22692293, doi:10.5194/acp-15-2269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levelt, P. F., and Coauthors, 2006: The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens., 44, 10931101, doi:10.1109/TGRS.2006.872333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2003 :The UARS Microwave Limb Sounder version 5 data set: Theory, characterization, and validation. J. Geophys. Res., 108, 4378, doi:10.1029/2002JD002273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2007: Version 2.2 Level 2 data quality and description document. JPL Tech. Doc. JPL D-33509, 115 pp. [Available online at https://mls.jpl.nasa.gov/data/v2-2_data_quality_document.pdf.]

  • Livesey, N. J., and Coauthors, 2015 : Version 4.2x Level 2 data quality and description document. JPL Tech. Doc. JPL D-33509 Rev. C, 169 pp. [Available online at https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf.]

  • McCarty, W., L. Coy, R. Gelaro, D. Merkova, E. B. Smith, M. Sienkiewicz, and K. Wargan, 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Memo. NASA/TM–2016-104606/Vol. 46, 64 pp. [Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160014544.pdf.]

  • McIntyre, M. E., and T. N. Palmer, 1984: The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys., 46, 825849, doi:10.1016/0021-9169(84)90063-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., and G. J. Labow, 1996: An assessment of the accuracy of 14.5 years of Nimbus 7 TOMS version 7 ozone data by comparison with the Dobson network. Geophys. Res. Lett., 23, 36953698, doi:10.1029/96GL03539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., and Coauthors, 2008: Validation of the Aura Ozone Monitoring Instrument total column ozone product. J. Geophys. Res., 113, D15S14, doi:10.1029/2007JD008802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., P. K. Bhartia, D. Haffner, G. J. Labow, and L. Flynn, 2013: The version 8.6 SBUV ozone data record: An overview. J. Geophys. Res. Atmos., 118, 80328039, doi:10.1002/jgrd.50597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., S. Frith, and G. J. Labow, 2015: OMI total column ozone: Extending the long-term data record. Atmos. Meas. Tech., 8, 48454850, doi:10.5194/amt-8-4845-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, doi:10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raspollini, P., and Coauthors, 2013: Ten years of MIPAS measurements with ESA Level 2 processor V6—Part 1: Retrieval algorithm and diagnostics of the products. Atmos. Meas. Tech., 6, 24192439, doi:10.5194/amt-6-2419-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., M. Shiotani, M. Suzuki, D. Kinnison, J. M. Zawodny, M. McHug, and K. A. Walker, 2015: Sunset–sunrise difference in solar occultation ozone measurements (SAGE II, HALOE, and ACE–FTS) and its relationship to tidal vertical winds. Atmos. Chem. Phys., 15, 829843, doi:10.5194/acp-15-829-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sofieva, V. F., J. Tamminen, E. Kyrölä, T. Mielonen, P. Veefkind, B. Hassler, and G. E. Bodeker, 2014: A novel tropopause-related climatology of ozone profiles. Atmos. Chem. Phys., 14, 283299, doi:10.5194/acp-14-283-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stajner, I., and Coauthors, 2008: Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns. J. Geophys. Res., 113, D16S32, doi:10.1029/2007JD008863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., M. J. Suárez, and R. Todling, 2016: Maintaining atmospheric mass and water balance in reanalyses. Quart. J. Roy. Meteor. Soc., 142, 15651573, doi:10.1002/qj.2763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2003a: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res., 108, 8238, doi:10.1029/2001JD000967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2003b: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 2. Tropospheric variability and the zonal wave-one. J. Geophys. Res., 108, 8241, doi:10.1029/2002JD002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, O., and P. K. Bhartia, 1995: Effect of stratospheric aerosol on ozone profile from BUV measurements. Geophys. Res. Lett., 22, 235238, doi:10.1029/94GL02994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, O., J. R. Herman, P. K. Bhartia, and Z. Ahmad, 1995: Properties of Mount Pinatubo aerosols as derived from Nimbus-7 Total Ozone Mapping Spectrometer measurements. J. Geophys. Res., 100, 14 04314 055, doi:10.1029/95JD01224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasilkov, A. P., J. Joiner, K. Yang, and P. K. Bhartia, 2004: Improving total column ozone retrievals by using cloud pressures derived from Raman scattering in the UV. Geophys. Res. Lett., 31, L20109, doi:10.1029/2004GL020603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. J., D. M. Cunnold, L. W. Thomason, J. M. Zawodny, and G. E. Bodeker, 2002: Assessment of SAGE version 6.1 ozone data quality. J. Geophys. Res., 107, 4691, doi:10.1029/2002JD002418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wargan, K., S. Pawson, M. A. Olsen, J. C. Witte, A. R. Douglass, J. R. Ziemke, S. E. Strahan, and J. E. Nielsen, 2015: The global structure of upper troposphere–lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data. J. Geophys. Res. Atmos., 120, 20132036, doi:10.1002/2014JD022493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waters, J. W., and Coauthors, 2006: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 10751092, doi:10.1109/TGRS.2006.873771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wellemeyer, C. G., P. K. Bhartia, S. L. Taylor, W. Qin, and C. Ahn, 2004: Version 8 Total Ozone Mapping Spectrometer (TOMS) Algorithm. Extended Abstracts, Quadrennial Ozone Symp., Kos, Greece, Int. Ozone Commission. [Available online at https://ozoneaq.gsfc.nasa.gov/media/docs/toms_algor.pdf.]

  • WMO, 2014: Scientific assessment of ozone depletion: 2014. Global Ozone Research and Monitoring Project Tech. Rep. 55, 416 pp. [Available online at http://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/Full_report_2014_Ozone_Assessment.pdf.]

  • Ziemke, J. R., S. Chandra, G. J. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte, 2011: A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos. Chem. Phys., 11, 92379251, doi:10.5194/acp-11-9237-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziemke, J. R., and Coauthors, 2014: Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model. J. Geophys. Res. Atmos., 119, 56715699, doi:10.1002/2013JD020914.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8061 4527 145
PDF Downloads 2752 386 41