• Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, doi:10.1029/1999JD901161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, doi:10.1038/nature12002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of cloud and precipitation. Proc. 5th Assembly U.G.G.I., Vol. 2, International Union of Geodesy and Geophysics, Lisbon, Portugal, 156–178.

  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1-D results. Mon. Wea. Rev., 132, 864882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, and B. P. Briegleb, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp.

  • Fettweis, X., B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van den Broeke, and H. Gallée, 2013: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere, 7, 469489, doi:10.5194/tc-7-469-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung (Colloidal meteorological processes in the formation of precipitation). Meteor. Z., 55, 121133.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32, L06501, doi:10.1029/2004GL022076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorter, W., J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke, 2014: Present and future near-surface wind climate of Greenland from high resolution regional climate modelling. Climate Dyn., 42, 15951611, doi:10.1007/s00382-013-1861-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357377, doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. Cappelen, X. Fettweis, S. Mernild, T. Mote, K. Steffen, and L. Wood, 2013: Atmospheric and oceanic climatic forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, doi:10.1002/joc.3743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, doi:10.1002/joc.3743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson, 2012: Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514518, doi:10.1038/nature10847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S. A., J. Wahr, M. Bevis, I. Velicogna, and E. Kendrick, 2010: The spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett., 37, L06501, doi:10.1029/2010GL042460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Maier-Reimer, E., and U. Mikolajewicz, 1989: Experiments with an OGCM on the cause of the Younger Dryas. Oceanography 1988, A. Ayala-Castanares, W. Wooster, and A. Yanez-Aranciba, Eds., UNAM Press, 87–100.

  • Miller, N. B., M. D. Shupe, C. J. Cox, V. P. Walden, D. D. Turner, and K. Steffen, 2015: Cloud radiative forcing at Summit, Greenland. J. Climate, 28, 62676280, doi:10.1175/JCLI-D-15-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2003: Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys. Res. Lett., 30, 1894, doi:10.1029/2003GL018012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed- phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 36833704, doi:10.1175/JAS3564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neff, W., G. Compo, F. M. Ralph, and M. D. Shupe, 2014: Continental heat anomalies and the extreme melting of the Greenland ice surface in 2013 and 1889. J. Geophys. Res., 119, 65206536, doi:10.1002/2014JD021470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., and Coauthors, 2012: The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett., 39, L20502, doi:10.1029/2012GL053611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 15171520, doi:10.1126/science.1185782.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

  • Overland, J. E., J. A. Francis, E. Hanna, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, doi:10.1029/2012GL053268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. Box, G. Feulner, M. Mann, A. Robinson, S. Rutherford, and E. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, doi:10.1038/nclimate2554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridley, J., J. Gregory, P. Huybrechts, and J. Lowe, 2010: Thresholds for irreversible decline of the Greenland ice sheet. Climate Dyn., 35, 10491057, doi:10.1007/s00382-009-0646-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, doi:10.1029/2011GL046583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2013: High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169186, doi:10.1175/BAMS-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., D. D. Turner, A. Zwink, M. M. Theiman, J. J. Mlawer, and T. R. Shippert, 2015: Deriving Arctic cloud microphysics at Barrow: Algorithms, results, and radiative closure. J. Appl. Meteor. Climatol., 54, 16751689, doi:10.1175/JAMC-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Steffen, K., J. E. Box, and W. Abdalati, 1996: Greenland Climate Network: GC-Net. CRREL 96-27 Special Rep. on Glaciers, Ice Sheets and Volcanoes, S. C. Colbeck, Ed., 98–103.

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strellis, B., 2013: Aerosol forcing over central Greenland: Estimates based on field measurements. M.S. thesis, School of Environmental Engineering, Georgia Institute of Technology, 70 pp. [Available online at https://smartech.gatech.edu/bitstream/handle/1853/49063/STRELLIS-THESIS-2013.pdf.]

  • Tedesco, M., and Coauthors, 2013: [Arctic] Greenland ice sheet [in “State of the Climate in 2012”]. Bull. Amer. Meteor. Soc., 94, S121S123.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., C. P. Mckay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple-scattering atmospheres. J. Geophys. Res., 94, 16 28716 301, doi:10.1029/JD094iD13p16287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007a: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190, doi:10.1175/BAMS-88-2-177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007b: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2013: Observations: Cryosphere. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 317–382.

  • Wegener, A., 1911: Thermodynamik der Atmosphäre. Barth, 331 pp.

  • Yin, J., M. E. Schlesinger, and R. J. Stouffer, 2009: Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci., 2, 262266, doi:10.1038/ngeo462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218222, doi:10.1126/science.1072708.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 3 3 3

Cloud–Atmospheric Boundary Layer–Surface Interactions on the Greenland Ice Sheet during the July 2012 Extreme Melt Event

View More View Less
  • 1 Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, and NOAA/Earth System Research Laboratory Physical Sciences Division, Boulder, Colorado
Restricted access

Abstract

Regional model simulations of the 10–13 July 2012 extreme melt event over the Greenland Ice Sheet (GIS) are used to investigate how low-level liquid-bearing clouds impact surface energy fluxes, and therefore the energy available for melt. A sensitivity study in which the radiation code is modified so that cloud liquid and ice do not emit, absorb, or reflect radiation is used to identify cloud impacts beyond the cloud radiative effect. It is found that Arctic mixed-phase stratocumuli are not produced in the sensitivity experiment, highlighting that cloud radiative fluxes are required to maintain the clouds. A number of feedbacks are found that damp the warming effect of the clouds. Thin mixed-phase clouds increase the downward longwave fluxes by 100 W m−2, but upward daytime surface longwave fluxes increase by 20 W m−2 (60 W m−2 at night) and net shortwave fluxes decrease by 40 W m−2 (partially due to a 0.05 increase in surface albedo), leaving only 40 W m−2 available for melt. This 40 W m−2 is distributed between the turbulent and conductive ground fluxes, so it is only at times of weak turbulent fluxes (i.e., at night or during melt) that this energy goes into the conductive ground flux, providing energy for melt. From these results it is concluded that it is the integrated impact of the clouds over the diurnal cycle (the preconditioning of the snowpack by the clouds at night) that made melt possible during this 3-day period. These findings are extended to understand the pattern of melt observed over the GIS.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0071.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Amy Solomon, amy.solomon@noaa.gov

Abstract

Regional model simulations of the 10–13 July 2012 extreme melt event over the Greenland Ice Sheet (GIS) are used to investigate how low-level liquid-bearing clouds impact surface energy fluxes, and therefore the energy available for melt. A sensitivity study in which the radiation code is modified so that cloud liquid and ice do not emit, absorb, or reflect radiation is used to identify cloud impacts beyond the cloud radiative effect. It is found that Arctic mixed-phase stratocumuli are not produced in the sensitivity experiment, highlighting that cloud radiative fluxes are required to maintain the clouds. A number of feedbacks are found that damp the warming effect of the clouds. Thin mixed-phase clouds increase the downward longwave fluxes by 100 W m−2, but upward daytime surface longwave fluxes increase by 20 W m−2 (60 W m−2 at night) and net shortwave fluxes decrease by 40 W m−2 (partially due to a 0.05 increase in surface albedo), leaving only 40 W m−2 available for melt. This 40 W m−2 is distributed between the turbulent and conductive ground fluxes, so it is only at times of weak turbulent fluxes (i.e., at night or during melt) that this energy goes into the conductive ground flux, providing energy for melt. From these results it is concluded that it is the integrated impact of the clouds over the diurnal cycle (the preconditioning of the snowpack by the clouds at night) that made melt possible during this 3-day period. These findings are extended to understand the pattern of melt observed over the GIS.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0071.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Amy Solomon, amy.solomon@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 557.46 KB)
Save