• Bao, X., and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, doi:10.1175/JCLI-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., 1968: Modification of the warm rain process. Proc. First Conf. on Weather Modification, Albany, NY, Amer. Meteor. Soc., 81–88.

  • Cao, Q., and Y. Qi, 2014: The variability of vertical structure of precipitation in Huaihe River basin of China: Implications from long-term spaceborne observations with TRMM Precipitation Radar. Water Resour. Res., 50, 36903705, doi:10.1002/2013WR014555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., Y. Yin, Q. Chen, H. Ding, and H. Xiao, 2014: Effect of convection schemes on the simulation of monsoon climates: A sensitivity study using RegCM4. Climate Res., 60, 147162, doi:10.3354/cr01229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., X. Wu, Y. Yin, and H. Xiao, 2015: Characteristics of heat sources and clouds over eastern China and the Tibetan Plateau in boreal summer. J. Climate, 28, 72797296, doi:10.1175/JCLI-D-14-00859.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T., W. Hall, and J. Coen, 1996: Source code documentation for the Clark–Hall cloud-scale model code version G3CH01. NCAR Tech. Note NCAR/TN-426+STR, 137 pp., doi:10.5065/D67W694V.

    • Crossref
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, X., and H.-F. Graf, 2009: Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94, 4761, doi:10.1007/s10584-009-9556-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1994: Monsoons over China. Springer, 420 pp.

  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., P. Yang, G. Guo, and S. K. Park, 2003: Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument. IEEE Trans. Geosci. Remote Sens., 41, 895900, doi:10.1109/TGRS.2003.810704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 36843709, doi:10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., Y. Yin, H. Su, Y. Shan, and R. Gao, 2015: The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in southeast China using a newly built static vacuum water vapor diffusion chamber. Atmos. Res., 153, 200208, doi:10.1016/j.atmosres.2014.08.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, and B. P. Briegleb, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note TN-420+STR, 152 pp.

  • Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15, 747762, doi:10.1175/1520-0450(1976)015<0747:IBCCEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R., Q. Min, X. Wu, and Y. Fu, 2013: Retrieving latent heating vertical structure from cloud and precipitation profiles—part II: Deep convective and stratiform rain processes. J. Quant. Spectrosc. Radiat. Transfer, 122, 4763, doi:10.1016/j.jqsrt.2012.11.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., R. Yu, Y. Xu, and X. Zhang, 2004: Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations. J. Meteor. Soc. Japan, 82, 761773, doi:10.2151/jmsj.2004.761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922944, doi:10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Wang, H. Wang, Y. Zheng, and H. Morrison, 2010: Modeling convective–stratiform precipitation processes on a mei‐yu front with the Weather Research and Forecasting Model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, doi:10.1029/2010JD013873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., R. Zhang, W. Qian, Z. Luo, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 21642177, doi:10.1175/2010JCLI4032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai River basin. J. Climate, 26, 110132, doi:10.1175/JCLI-D-12-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in east China. Mon. Wea. Rev., 142, 203221, doi:10.1175/MWR-D-13-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, X., X. Wu, T. Yuan, J. Bian, and D. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 66126626, doi:10.1175/JCLI-D-14-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., C. Shie, J. Simpson, S. Braun, R. Johnson, and P. Ciesielski, 2003: Convective systems over the South China Sea: Cloud-resolving model simulations. J. Atmos. Sci., 60, 29292956, doi:10.1175/1520-0469(2003)060<2929:CSOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueda, H., H. Kamahori, and N. Yamazaki, 2003: Seasonal contrasting features of heat and moisture budgets between the eastern and western Tibetan Plateau during the GAME IOP. J. Climate, 16, 23092324, doi:10.1175/2757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Gao, L. Liang, D. Deng, and H. Gong, 2014a: Multi-scale characteristics of moisture transport during a rainstorm process in north China. Atmos. Res., 145–146, 189204, doi:10.1016/j.atmosres.2014.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Luo, and B. J. D. Jou, 2014b: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13 20613 232, doi:10.1002/2014JD022339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, L., B. Hoskins, and K. Shine, 2012: A global blended tropopause based on ERA data. Part I: Climatology. Quart. J. Roy. Meteor. Soc., 138, 561575, doi:10.1002/qj.951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., and Y. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J. Meteor. Res., 30, 719736, doi:10.1007/s13351-016-6089-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., and X.-Z. Liang, 2005: Radiative effects of cloud horizontal inhomogeneity and vertical overlap identified from a monthlong cloud-resolving model simulation. J. Atmos. Sci., 62, 41054112, doi:10.1175/JAS3565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55, 26932714, doi:10.1175/1520-0469(1998)055<2693:LTBOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of ice microphysics on cloud–radiation interaction. J. Atmos. Sci., 56, 31773195, doi:10.1175/1520-0469(1999)056<3177:LTBOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., X.-Z. Liang, and S. Park, 2007: Cloud-resolving model simulations over the ARM SGP. Mon. Wea. Rev., 135, 28412853, doi:10.1175/MWR3438.1.

  • Wu, X., S. Park, and Q. Min, 2008: Seasonal variation of cloud systems over ARM SGP. J. Atmos. Sci., 65, 21072129, doi:10.1175/2007JAS2394.1.

  • Xu, W., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 15771592, doi:10.1175/MWR-D-12-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448465, doi:10.1175/2010JCLI3719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., C. Lu, Y. Ding, X. Shi, Y. Guo, and W. Zhu, 2013: What is the relationship between China summer precipitation and the change of apparent heat source over the Tibetan Plateau? Atmos. Sci. Lett., 14, 227234, doi:10.1002/asl2.444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11, 463482, doi:10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., Y. Zhang, Y. Qian, A. Huang, and H. Yan, 2015: Calibration of a convective parameterization scheme in the WRF Model and its impact on the simulation of East Asian summer monsoon precipitation. Climate Dyn., 44, 16611684, doi:10.1007/s00382-014-2118-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., S. Wurzler, Z. Levin, and T. G. Reisin, 2002: Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res., 107, 4724, doi:10.1029/2001JD001544.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., Q. Chen, L. Jin, B. Chen, S. Zhu, and X. Zhang, 2012: The effects of deep convection on the concentration and size distribution of aerosol particles within the upper troposphere: A case study. J. Geophys. Res., 117, D22202, doi:10.1029/2012JD017827.

    • Search Google Scholar
    • Export Citation
  • You, Q., Y. Jiao, H. Lin, J. Min, S. Kang, G. Ren, and X. Meng, 2014: Comparison of NCEP/NCAR and ERA-40 total cloud cover with surface observations over the Tibetan Plateau. Int. J. Climatol., 34, 25292537, doi:10.1002/joc.3852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., R. Yu, M. Zhang, W. Lin, H. Chen, and J. Li, 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 33073320, doi:10.1175/JCLI-D-11-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 3 3 3

Characteristics of Cloud Systems over the Tibetan Plateau and East China during Boreal Summer

View More View Less
  • 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory for Aerosol–Cloud–Precipitation of the China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory for Aerosol–Cloud–Precipitation of the China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
  • | 4 Key Laboratory for Aerosol–Cloud–Precipitation of the China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
  • | 5 Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China
Restricted access

Abstract

Constrained by ERA-Interim, a cloud-resolving model is employed to characterize cloud systems over the Tibetan Plateau (TP) and east China. The authors focus on analyzing the role of different physical processes on cloud macro- and microscale properties of the cloud systems, especially convective cloud systems between east China and the TP. It is found that convective clouds over the TP are thinner than over east China. This difference is also reflected in the albedo at the top of the atmosphere, where smaller albedos are found for the clouds over the TP. Furthermore, the lifetimes of the deep cloud systems over the TP are shorter than over east China. For the entire simulated period, the latent heat released by phase transitions contributes the most to the total heating and moisture budget, followed by eddy transport over all regions. In addition, radiative heating also plays a nonnegligible role in the total heating effects over the TP. These results also suggest that the influence of ice phase processes is more important over the TP than east China, especially during deep convective periods. Affected by strong surface heat flux, the cloud-top height of convective clouds over the TP exhibits a diurnal cycle, leading to a diurnal cycle of rainfall.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Yan Yin, yinyan@nuist.edu.cn

Abstract

Constrained by ERA-Interim, a cloud-resolving model is employed to characterize cloud systems over the Tibetan Plateau (TP) and east China. The authors focus on analyzing the role of different physical processes on cloud macro- and microscale properties of the cloud systems, especially convective cloud systems between east China and the TP. It is found that convective clouds over the TP are thinner than over east China. This difference is also reflected in the albedo at the top of the atmosphere, where smaller albedos are found for the clouds over the TP. Furthermore, the lifetimes of the deep cloud systems over the TP are shorter than over east China. For the entire simulated period, the latent heat released by phase transitions contributes the most to the total heating and moisture budget, followed by eddy transport over all regions. In addition, radiative heating also plays a nonnegligible role in the total heating effects over the TP. These results also suggest that the influence of ice phase processes is more important over the TP than east China, especially during deep convective periods. Affected by strong surface heat flux, the cloud-top height of convective clouds over the TP exhibits a diurnal cycle, leading to a diurnal cycle of rainfall.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Yan Yin, yinyan@nuist.edu.cn
Save