• Bader, J., M. D. S. Mesquita, K. I. Hodges, N. Keenlyside, S. Osterhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos. Res., 101, 809834, doi:10.1016/j.atmosres.2011.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, M. Hirschi, and A. Betts, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and L. Marx, 2000: COLA AGCM simulation of the effect of anomalous spring snow over Eurasia on the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 126, 25752584, doi:10.1002/qj.49712656811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, doi:10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. T., 2001: The role of the anomalous snow cover over the Qinghai-Xizang Plateau and ENSO in the great floods of 1998 in the Changjiang River valley (in Chinese). Chin. J. Atmos. Sci., 25, 184192.

    • Search Google Scholar
    • Export Citation
  • Chen, X. F., and W. L. Song, 2000a: Circulation analysis of different influence of snow cover over the Tibetan Plateau and Eurasia in winter on summertime droughts and floods of China (in Chinese). Atmos. Sci., 24, 585592.

    • Search Google Scholar
    • Export Citation
  • Chen, X. F., and W. L. Song, 2000b: Analysis of relationship between snow cover on Eurasia and Qinghai-Xizang Plateau in winter and summer rainfall in China and application to prediction (in Chinese). Plateau Meteor., 19, 214224.

    • Search Google Scholar
    • Export Citation
  • Chinese National Climate Center, 1998: The 1998 Flood in China and Climatic Abnormality (in Chinese). Meteorology Press, 137 pp.

  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., C. M. Bitz, and M. L. Blackmon, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dash, S. K., G. P. Singh, M. S. Shekhar, and A. D. Vernekar, 2005: Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia. Climate Dyn., 24, 110, doi:10.1007/s00382-004-0448-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and F. Molteni, 1999: Ensemble simulations of Eurasian snow-depth anomalies and their influence on the summer Asian monsoon. Quart. J. Roy. Meteor. Soc., 125, 25972610, doi:10.1002/qj.49712555913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, and J. Cohen, 2003: Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Climate, 16, 39173931, doi:10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, J. Cohen, and D. Robinson, 2004: Sensitivity of atmospheric response to modeled snow anomaly characteristics. J. Geophys. Res., 109, D06107, doi:10.1029/2003JD004160.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., and Coauthors, 1994: Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J. Climate, 7, 16331656, doi:10.1175/1520-0442(1994)007<1633:COSCTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and Coauthors, 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3 (CAM3): Mean features. J. Climate, 19, 21992221, doi:10.1175/JCLI3755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., B.-J. Kim, J.-H. Oh, and S.-E. Moon, 2002: Relationship between Soviet snow and Korean rainfall. Int. J. Climatol., 22, 13131325, doi:10.1002/joc.809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H. Weng, 2001: Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997–98 El Niño. J. Climate, 14, 12941308, doi:10.1175/1520-0442(2001)014<1294:CMOGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z. K., B. Y. Wu, and W. J. Zhu, 2009: Numerical simulation on effect of spring Eurasian snow cover on summer rainfall in China (in Chinese). Adv. Climate Change, 5, 196201.

    • Search Google Scholar
    • Export Citation
  • Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., R. H. Zhang, and Z. Y. Zuo, 2014: Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J. Geophys. Res. Atmos., 119, 5464, doi:10.1002/2013JD020940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuyama, H., and K. Masuda, 1998: Seasonal/interannual variations of soil moisture in the former USSR and its relationship to Indian summer monsoon rainfall. J. Climate, 11, 652658, doi:10.1175/1520-0442(1998)011<0652:SIVOSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, S. N., and G. Q. Zhou, 2012: Mechanism for the correlation of winter fresh snow extent over Northern Eurasia and summer climate anomalies in China: Anomalous seasonal transition of land as a bond (in Chinese). Chin. J. Atmos. Sci., 36, 297315.

    • Search Google Scholar
    • Export Citation
  • Mu, S. N., and G. Q. Zhou, 2015: Mechanism for the correlation of winter fresh snow extent over Northern Eurasia and summer climate anomalies in China: The important role of Eurasian winter fresh snow extent (in Chinese). Chin. J. Atmos. Sci., 39, 169191.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of EOFs. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., L. Zhang, D. H. W. Peters, K. Fraedrich, X. Zhu, A. Schneidereit, and B. van den Hurk, 2015: Extreme precipitation events over north China in August 2010 and their link to eastward-propagating wave-trains across Eurasia: Observations and monthly forecasting. Quart. J. Roy. Meteor. Soc., 141, 30973105, doi:10.1002/qj.2594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, doi:10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and J. Cohen, 2003: The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett., 30, 1302, doi:10.1029/2002GL016341.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, doi:10.1175/JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, M., 2001: Climate memory of snow mass as soil moisture over central Eurasia. J. Geophys. Res., 106, 33 39333 403, doi:10.1029/2001JD000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere–troposphere interactions. J. Geophys. Res., 117, D13107, doi:10.1029/2012JD017587.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., P. J. Kushner, and J. Cohen, 2011: The role of linear interference in northern annular mode variability associated with Eurasian snow cover extent. J. Climate, 24, 61856202, doi:10.1175/JCLI-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solberg, R., and Coauthors, 2009: Global snow monitoring for climate research—Design justification file. European Space Agency Study Contract Rep. 21703/08/I-EC, Deliverable 1.7, 246 pp.

  • Spiegel, M. R., 1988: Theory and Problems of Statistics. McGraw-Hill, 359 pp.

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., D. R. Tucek, and M. R. Peterson, 1982: Seasonal snow cover and short-term climatic fluctuations over the United States. Mon. Wea. Rev., 110, 14741485, doi:10.1175/1520-0493(1982)110<1474:SSCAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, T., L. Wang, W. Dong, and J. Zhang, 2011: A comparison of East Asian summer monsoon simulations from CAM3.1 with three dynamic cores. Theor. Appl. Climatol., 106, 295306, doi:10.1007/s00704-011-0409-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., K. Yang, and R. H. Zhang, 2009a: Eurasian snow cover variability and its association with summer rainfall in China. Adv. Atmos. Sci., 26, 3144, doi:10.1007/s00376-009-0031-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., R. H. Zhang, and B. Wang, 2009b: On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study. Adv. Atmos. Sci., 26, 666678, doi:10.1007/s00376-009-9009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., R. H. Zhang, B. Wang, and R. D’Arrigo, 2009c: On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett., 36, L09501, doi:10.1029/2009GL037299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., R. H. Zhang, R. D’Arrigo, and J. Su, 2013: On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Climate, 26, 55235536, doi:10.1175/JCLI-D-12-00524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 12851304, doi:10.1175/JCLI4068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116, D16116, doi:10.1029/2011JD015779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., G. Liu, and P. Zhao, 2014: Contrasting Eurasian spring and summer climate anomalies associated with western and eastern Eurasian spring snow cover changes. J. Geophys. Res. Atmos., 119, 74107424, doi:10.1002/2014JD021764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote responses to excessive snow cover mass over Eurasia appearing in the northern spring and summer climate—A study with the MRI GCM. J. Meteor. Soc. Japan, 69, 473485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., J.-G. Jhun, R. Lu, and B. Wang, 2010: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. J. Geophys. Res., 115, D22113, doi:10.1029/2010JD013996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zampieri, M., F. D’Andrea, R. Vautard, P. Ciais, N. D. Noblet-Ducoudré, and P. Yiou, 2009: Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Climate, 22, 47474758, doi:10.1175/2009JCLI2568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 33093322, doi:10.1175/2011JCLI4084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asia monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, doi:10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., B. Y. Wu, P. Zhao, and J. P. Han, 2008: The decadal shift of the summer climate in the late 1980s over eastern China and its possible causes. Acta Meteor. Sin., 22, 435445.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., B. Y. Wu, J. P. Han, and Z. Y. Zuo, 2013: Effects on summer monsoon and rainfall change over China due to Eurasian snow cover and ocean thermal conditions. Climate Change: Realities, Impacts over Ice Cap, Sea Level and Risks, B. R. Singh, Ed., InTech, 227–250.

    • Crossref
    • Export Citation
  • Zhang, R.-N., and B. Y. Wu, 2011: The Northern Hemisphere atmospheric response to spring Arctic sea ice anomalies in CAM3.0 model (in Chinese). Chin. J. Atmos. Sci., 35, 847862.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., R. H. Zhang, J. P. Liu, X. Zhou, and J. He, 2007: Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall. Climate Dyn., 28, 797811, doi:10.1007/s00382-006-0212-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., and R. H. Zhang, 2007: The spring soil moisture and the summer rainfall in eastern China. Chin. Sci. Bull., 52, 33103312, doi:10.1007/s11434-007-0442-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., and R. H. Zhang, 2009: Temporal and spatial features of the soil moisture in boreal spring in eastern China. Sci. China, 52D, 269278, doi:10.1007/s11430-009-0011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., and R. H. Zhang, 2016: Influence of soil moisture in eastern China on East Asian summer monsoon. Adv. Atmos. Sci., 33, 151163, doi:10.1007/s00376-015-5024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., S. Yang, W. Q. Wang, A. Kumar, Y. Xue, and R. H. Zhang, 2011: Relationship between anomalies of Eurasian snow and southern China rainfall in winter. Environ. Res. Lett., 6, 045402, doi:10.1088/1748-9326/6/4/045402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, Z. Y., R. H. Zhang, B. Y. Wu, and X. Y. Rong, 2012: Decadal variability in springtime snow over Eurasia: Relation with circulation and possible influence on springtime rainfall over China. Int. J. Climatol., 32, 13361345, doi:10.1002/joc.2355.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 10 10 10

Impact of Eurasian Spring Snow Decrement on East Asian Summer Precipitation

View More View Less
  • 1 Chinese Academy of Meteorological Sciences, and National Climate Center, China Meteorological Administration, Beijing, China
  • | 2 Chinese Academy of Meteorological Sciences, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
  • | 3 Chinese Academy of Meteorological Sciences, Beijing, China
Restricted access

Abstract

In this study, the relationship between Eurasian spring snow decrement (SSD) and East Asian summer precipitation and related mechanisms were investigated using observational data and the Community Atmospheric Model, version 3.1 (CAM3.1). The results show that a west–east dipole pattern in Eurasian SSD anomalies, with a negative center located in the region between eastern Europe and the West Siberia Plain (EEWSP) and a positive center located around Baikal Lake (BL), is significantly associated with East Asian summer precipitation via triggering an anomalous midlatitude Eurasian wave train. Reduced SSD over EEWSP corresponds to anomalously dry local soil conditions from spring to the following summer, thereby increasing surface heat flux and near-surface temperatures. Similarly, the increase in SSD over BL is accompanied by anomalously low near-surface temperatures. The near-surface thermal anomalies cause an anomalous meridional temperature gradient, which intensifies the lower-level baroclinicity and causes an acceleration of the subtropical westerly jet stream, leading to an enhanced and maintained Eurasian wave train. Additionally, the atmospheric response to changed surface thermal conditions tends to simultaneously increase the local 1000–500-hPa thickness, which further enhances the Eurasian wave train. Consequently, significant wave activity flux anomalies spread from eastern Europe eastward to East Asia and significantly influence the summer precipitation over China, with more rainfall over northeastern China and the Yellow River valley and less rainfall over Inner Mongolia and southern China.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Dr. Renhe Zhang, renhe@camscma.cn

Abstract

In this study, the relationship between Eurasian spring snow decrement (SSD) and East Asian summer precipitation and related mechanisms were investigated using observational data and the Community Atmospheric Model, version 3.1 (CAM3.1). The results show that a west–east dipole pattern in Eurasian SSD anomalies, with a negative center located in the region between eastern Europe and the West Siberia Plain (EEWSP) and a positive center located around Baikal Lake (BL), is significantly associated with East Asian summer precipitation via triggering an anomalous midlatitude Eurasian wave train. Reduced SSD over EEWSP corresponds to anomalously dry local soil conditions from spring to the following summer, thereby increasing surface heat flux and near-surface temperatures. Similarly, the increase in SSD over BL is accompanied by anomalously low near-surface temperatures. The near-surface thermal anomalies cause an anomalous meridional temperature gradient, which intensifies the lower-level baroclinicity and causes an acceleration of the subtropical westerly jet stream, leading to an enhanced and maintained Eurasian wave train. Additionally, the atmospheric response to changed surface thermal conditions tends to simultaneously increase the local 1000–500-hPa thickness, which further enhances the Eurasian wave train. Consequently, significant wave activity flux anomalies spread from eastern Europe eastward to East Asia and significantly influence the summer precipitation over China, with more rainfall over northeastern China and the Yellow River valley and less rainfall over Inner Mongolia and southern China.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Dr. Renhe Zhang, renhe@camscma.cn
Save