• Baik, J.-J., and J.-S. Paek, 2001: Relationship between vertical wind shear and typhoon intensity change, and development of three‐predictor intensity prediction model. J. Meteor. Soc. Japan, 79, 695700, doi:10.2151/jmsj.79.695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcikowska, M., F. Feser, and H. von Storch, 2012: Usability of best track data in climate statistics in the western North Pacific. Mon. Wea. Rev., 140, 28182830, doi:10.1175/MWR-D-11-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99128, doi:10.1146/annurev.fluid.37.061903.175702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2006: Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment.” Science, 311, 1713, doi:10.1126/science.1121522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc., 464, 249272, 10.1098/rspa.2007.0183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and M. Xu, 2009: Inter-annual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: Time series analysis. Int. J. Climatol., 29, 12851293, doi:10.1002/joc.1782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., B. J. Kim, D. W. Kim, and H.-R. Byun, 2010: Interdecadal variation of tropical cyclone making landfall over the Korean Peninsula. Int. J. Climatol., 30, 14721483, doi:10.1002/joc.1986.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2009: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization Rep. TCM-VI/Doc. 2.3, 62 pp.

  • HKO, 2015: Tropical cyclones in 2014. Hong Kong Observatory Rep., 120 pp.

  • Holland, G., and C. L. Bruyère, 2014: Recent intense hurricane response to global climate change. Climate Dyn., 42, 617627, doi:10.1007/s00382-013-1713-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., C. Ho, H. Kim, C. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, doi:10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, doi:10.1175/JCLI-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2005: Hurricanes and global warming. Nature, 438, E11E12, doi:10.1038/nature04477.

  • Lee, T.-C., Y.-Y. Leung, M.-H. Kok, and H.-S. Chan, 2012: The long term variations of tropical cyclone activity in the South China Sea and the vicinity of Hong Kong. Trop. Cyclone Res. Rev., 1, 277292, doi:10.6057/2012TCRR02.01.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activities by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 29192930, doi:10.1175/JCLI-D-12-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476, doi:10.1175/2008JCLI2207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., and B. Zhao, 2013: Analysis of the climatic characteristics of landing tropical cyclones in East China. J. Trop. Meteor., 19, 145153.

    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., C.-H. Ho, J.-H. Kim, and H.-S. Kim, 2011: Strong landfall typhoons in Korea and Japan in a recent decade. J. Geophys. Res., 116, D07105, doi:10.1029/2010JD014801.

    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., C.-H. Ho, J.-H. Kim, and H.-S. Kim, 2013: Spatially inhomogeneous trends of tropical cyclone intensity over the western North Pacific for 1977–2010. J. Climate, 26, 50885101, doi:10.1175/JCLI-D-12-00386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., C.-H. Ho, and J.-H. Kim, 2014: Growing threat of intense tropical cyclones to East Asia over the period 1977–2010. Environ. Res. Lett., 9, 014008, doi:10.1088/1748-9326/9/1/014008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh, 2015: Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett., 42, 646652, doi:10.1002/2014GL061793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, J.-Y., C. Chou, and P.-S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. J. Climate, 22, 36173628, doi:10.1175/2009JCLI2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 6589, doi:10.1002/wcc.371.

    • Search Google Scholar
    • Export Citation
  • Wang, R., L. Wu, and C. Wang, 2011: Typhoon track changes associated with global warming. J. Climate, 24, 37483752, doi:10.1175/JCLI-D-11-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698, doi:10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 34053424, doi:10.1175/JCLI-D-12-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, F., and Z. Xiao, 2010: Characteristics of tropical cyclones in China and their impacts analysis. Nat. Hazards, 54, 827837, doi:10.1007/s11069-010-9508-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, M., T. R. Knutson, H. Kamahori, and T. C. Lee, 2012: Impacts of climate change on tropical cyclones in the western North Pacific basin. Part II: Late 21st century projections. Trop. Cyclone Res. Rev., 1, 231241, doi:10.6057/2012TCRR02.09.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489495, doi:10.1175/2008BAMS2631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and L. Wu, 2014: Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study. Meteor. Atmos. Phys., 125, 89101, doi:10.1007/s00703-014-0322-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 26
PDF Downloads 29 29 29

Change in Destructiveness of Landfalling Tropical Cyclones over China in Recent Decades

View More View Less
  • 1 Guy Carpenter Asia-Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
  • | 2 Hong Kong Observatory, Hong Kong, China
Restricted access

Abstract

This study investigates changes in the destructiveness of landfalling tropical cyclones (TCs) over China during 1975–2014. Using four different TC datasets, it is found that TCs making landfall over east China (TCEC) have tended to be more destructive in recent decades, with a significant increase in the power dissipation index (PDI) after landfall. Both time series analysis and diagnostic analysis reveal that such an increase in the PDI of TCEC is associated with concomitant enhancement in landfall frequency as well as landfall intensity over east China. In contrast, changes in the PDI of TCs making landfall over south China (TCSC) are less apparent. Examination of different TC-related parameters shows no obvious changes in terms of landfall frequency, duration, and maximum intensity of TCSC. Diagnostic analysis further suggests that the reduction in TC occurrence over south China offsets considerably the positive effects of the intensity and the nonlinear term.

Further examination of the environmental parameters reveals significant changes in the large-scale steering flow in recent decades, which is characterized by a prominent cyclonic circulation centered over southeast China. The southeasterly flows on the eastern flank of the cyclonic circulation tend to favor subsequent landfall of TCs over east China, resulting in an increase in landfall frequency, which contributes in part to the enhanced PDI of TCs over this region. Meanwhile, the slowing down of the mean translation speed of TCEC and the weakening of vertical wind shear coupled with warmer SSTs in the WNP tend to favor the intensification of TCEC, leading to an increase in intensity and hence the PDI of TCs over east China.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Wen Zhou, wenzhou@cityu.edu.hk

Abstract

This study investigates changes in the destructiveness of landfalling tropical cyclones (TCs) over China during 1975–2014. Using four different TC datasets, it is found that TCs making landfall over east China (TCEC) have tended to be more destructive in recent decades, with a significant increase in the power dissipation index (PDI) after landfall. Both time series analysis and diagnostic analysis reveal that such an increase in the PDI of TCEC is associated with concomitant enhancement in landfall frequency as well as landfall intensity over east China. In contrast, changes in the PDI of TCs making landfall over south China (TCSC) are less apparent. Examination of different TC-related parameters shows no obvious changes in terms of landfall frequency, duration, and maximum intensity of TCSC. Diagnostic analysis further suggests that the reduction in TC occurrence over south China offsets considerably the positive effects of the intensity and the nonlinear term.

Further examination of the environmental parameters reveals significant changes in the large-scale steering flow in recent decades, which is characterized by a prominent cyclonic circulation centered over southeast China. The southeasterly flows on the eastern flank of the cyclonic circulation tend to favor subsequent landfall of TCs over east China, resulting in an increase in landfall frequency, which contributes in part to the enhanced PDI of TCs over this region. Meanwhile, the slowing down of the mean translation speed of TCEC and the weakening of vertical wind shear coupled with warmer SSTs in the WNP tend to favor the intensification of TCEC, leading to an increase in intensity and hence the PDI of TCs over east China.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Wen Zhou, wenzhou@cityu.edu.hk
Save