• Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 19691978, doi:10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., T. Ewen, T. Griesser, and R. Jenne, 2006: Multidecadal signal of solar variability in the upper troposphere during the 20th century. Space Sci. Rev., 125, 305315, doi:10.1007/s11214-006-9065-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., E. Xoplaki, C. Casty, A. Pauling, and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197, doi:10.1007/s00382-006-0175-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2009: La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett., 36, L12805, doi:10.1029/2009GL037885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., M. L. R. Liberato, L. de la Torre, H. F. Graf, and C. C. DaCamara, 2009: Baroclinic Rossby wave forcing and barotropic Rossby wave response to stratospheric vortex variability. J. Atmos. Sci., 66, 902914, doi:10.1175/2008JAS2862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, doi:10.1029/2004GL022015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C. Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, doi:10.1029/2009GL041708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973989, doi:10.1007/s00382-012-1654-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., L. Wang, Y. Xue, and S. Sun, 2009: Variabilities of the spring river runoff system in east China and their relations to precipitation and sea surface temperature. Int. J. Climatol., 29, 13811394, doi:10.1002/joc.1785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, doi:10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., M. Barlow, P. J. Kushner, and K. Saito, 2007: Stratosphere–troposphere coupling and links with Eurasian surface variability. J. Climate, 20, 53355343, doi:10.1175/2007JCLI1725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Jones, J. C. Furtado, and E. Tziperman, 2013: Warm Arctic, cold continents: A common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography, 26, 150160, doi:10.5670/oceanog.2013.70.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Climate Dyn., 40, 28252847, doi:10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. Li, 2011: Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res., 116, D13102, doi:10.1029/2010JD015160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong, 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, doi:10.1029/2010JD014761.

    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, C. Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 20912101, doi:10.1002/joc.2217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO types? J. Climate, 27, 26822698, doi:10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnection. J. Climate, 27, 62256244, doi:10.1175/JCLI-D-13-00757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and E. P. Gerber, 2013: The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, doi:10.1175/JCLI-D-12-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouirand, I., and V. Moron, 2003: Variability of the impact of El Niño–Southern Oscillation on sea‐level pressure anomalies over the North Atlantic in January to March (1874–1996). Int. J. Climatol., 23, 15491566, doi:10.1002/joc.963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, H. F., and K. Walter, 2005: Polar vortex controls coupling of North Atlantic Ocean and atmosphere. Geophys. Res. Lett., 32, L01704, doi:10.1029/2004GL020664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graf, H. F., and D. Zanchettin, 2012: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res., 117, D01102, doi:10.1029/2011JD016493.

    • Search Google Scholar
    • Export Citation
  • Graf, H. F., D. Zanchettin, C. Timmreck, and M. Bittner, 2014: Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex. Climate Dyn., 43, 32453266, doi:10.1007/s00382-014-2101-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., J. Lu, and K. A. Peterson, 2004: Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys. Res. Lett., 31, L02208, doi:10.1029/2003GL018542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., M.-K. Sung, S.-I. An, S. D. Schubert, and J.-S. Kug, 2014: Role of tropical Atlantic SST variability as a modulator of El Niño teleconnections. Asia-Pac. J. Atmos. Sci., 50, 247261, doi:10.1007/s13143-014-0013-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and D. L. Hartmann, 1985: Variability in a nonlinear model of the atmosphere with zonally symmetric forcing. J. Atmos. Sci., 42, 27832797, doi:10.1175/1520-0469(1985)042<2783:VIANMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime Northern Hemisphere. J. Climate, 14, 45124529, doi:10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 10291042, doi:10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interactions of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 60476065, doi:10.1175/2009JCLI2798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., K. Higuchi, and A. Shabbar, 1998: The relationship between the North Atlantic Oscillation and El Niño–Southern Oscillation. Geophys. Res. Lett., 25, 27072710, doi:10.1029/98GL01936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., M. Ji, K. Higuchi, and A. Shabbar, 2006: Temporal structures of North Atlantic Oscillation and its impact on the regional climate variability. Adv. Atmos. Sci., 23, 2332, doi:10.1007/s00376-006-0003-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus, 65A, 19375, doi:10.3402/tellusa.v65i0.19375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X. J., J. W. Ge, and S. Wang, 2016: Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent. Int. J. Climatol., 36, 33843397, doi:10.1002/joc.4562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. J. Osborn, and K. R. Briffa, 2003: Pressure-based measures of the North Atlantic Oscillation (NAO): A comparison and assessment of changes in the strength of the NAO and its influence on surface climate parameters. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 51–62.

    • Crossref
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karori, M. A., J. P. Li, and F. F. Jin, 2013: The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over southeast China. J. Climate, 26, 45674582, doi:10.1175/JCLI-D-12-00324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, doi:10.1126/science.1174062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., U. Ulbrich, F. Marques, and J. Corte‐Real, 2003: Decadal changes in the link between El Niño and springtime North Atlantic Oscillation and European–North African rainfall. Int. J. Climatol., 23, 12931311, doi:10.1002/joc.944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi:10.1029/2011GL048237.

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, doi:10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, A. W.-C., M. Herzog, and H.-F. Graf, 2015: Two key parameters for the El Niño continuum: Zonal wind anomalies and western Pacific subsurface potential temperature. Climate Dyn., 45, 34613480, doi:10.1007/s00382-015-2550-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012a: Impact of ENSO on the atmospheric variability over the north Atlantic in late winter—Role of transient eddies. J. Climate, 25, 320342, doi:10.1175/JCLI-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012b: Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circulation over the North Atlantic. J. Climate, 25, 49935010, doi:10.1175/JCLI-D-11-00377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Parages, J., B. Rodríguez-Fonseca, and L. Terray, 2015: A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Climate Dyn., 45, 867880, doi:10.1007/s00382-014-2319-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Parages, J., B. Rodríguez-Fonseca, D. Dommenget, and C. Frauen, 2016: ENSO influence on the North Atlantic European climate: A non-linear and non-stationary approach. Climate Dyn., 47, 20712084, doi:10.1007/s00382-015-2951-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathieu, P.-P., R. T. Sutton, B. W. Dong, and M. Collins, 2004: Predictability of winter climate over the North Atlantic European region during ENSO events. J. Climate, 17, 19531974, doi:10.1175/1520-0442(2004)017<1953:POWCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and C. J. Willmott, 2009: Terrestrial air temperature and precipitation: Monthly climatologies, version 4.01. Center for Climate Research, Department of Geography, University of Delaware. [Available online at http://climate.geog.udel.edu/~climate/html_pages/Global2_Clim/README.global2_clim.html.]

  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107, 9941013, doi:10.1175/1520-0493(1979)107<0994:LSAODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascolini-Campbell, M., D. Zanchettin, O. Bothe, C. Timmreck, D. Matei, J. H. Jungclaus, and H. F. Graf, 2015: Toward a record of central Pacific El Niño events since 1880. Theor. Appl. Climatol., 119, 379389, doi:10.1007/s00704-014-1114-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, doi:10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and H. F. Graf, 1995: The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J. Climate, 8, 22812295, doi:10.1175/1520-0442(1995)008<2281:TSCBTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., M. Reyers, and U. Ulbrich, 2011: The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dyn., 36, 337354, doi:10.1007/s00382-010-0770-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi:10.1029/2010GL046031.

  • Scaife, A. A., and Coauthors, 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn., 38, 20892097, doi:10.1007/s00382-011-1080-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabbar, A., J. Huang, and K. Higuchi, 2001: The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic. Int. J. Climatol., 21, 355369, doi:10.1002/joc.612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. E. Hurlburt, and E. J. Metzger, 2011: Anomalous tropical ocean circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001, doi:10.1029/2011JC007304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., Y.-G. Ham, J.-S. Kug, and S.-I. An, 2013: An alternative effect by the tropical North Atlantic SST in intraseasonally varying El Nino teleconnection over the North Atlantic. Tellus, 65A, 19863, doi:10.3402/tellusa.v65i0.19863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 1997: A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett., 24, 29852988, doi:10.1029/97GL03094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-inpendent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/15200469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., and M. H. England, 2009: El Niño Modoki impacts on Australian rainfall. J. Climate, 22, 31673174, doi:10.1175/2008JCLI2589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., 1996: Steady linear response to tropical heating in barotropic and baroclinic models. J. Atmos. Sci., 53, 16981709, doi:10.1175/1520-0469(1996)053<1698:SLRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Türkeş, M., 1996: Spatial and temporal analysis of annual rainfall variations in Turkey. Int. J. Climatol., 16, 10571076, doi:10.1002/(SICI)1097-0088(199609)16:9<1057::AID-JOC75>3.0.CO;2-D.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, K., and H.-F. Graf, 2005: The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength. Atmos. Chem. Phys., 5, 239248, doi:10.5194/acp-5-239-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, K., and H.-F. Graf, 2006: Life cycles of North Atlantic teleconnections under strong and weak polar vortex conditions. Quart. J. Roy. Meteor. Soc., 132, 467483, doi:10.1256/qj.05.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Li, M. Mu, and W. Duan, 2013: Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Climate Dyn., 40, 28872902, doi:10.1007/s00382-012-1434-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., and H. H. Hendon, 2007: Sensitivity of Australian rainfall to inter–El Niño variations. J. Climate, 20, 42114226, doi:10.1175/JCLI4228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi:10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, doi:10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, doi:10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirkman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J., and S.-W. Yeh, 2010: Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. J. Climate, 23, 45254537, doi:10.1175/2010JCLI3352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., and F. Zwiers, 2007: The impact of combined ENSO and PDO on the PNA climate: A 1,000-year climate modeling study. Climate Dyn., 29, 837851, doi:10.1007/s00382-007-0267-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and Y. Zou, 2013: The enhanced drying effect of Central-Pacific El Niño on US winter. Environ. Res. Lett., 8, 014019, doi:10.1088/1748-9326/8/1/014019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, doi:10.1175/JCLI-D-11-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and H. Yan, 2013: Different types of La Niña events and different responses of the tropical atmosphere. Chin. Sci. Bull., 58, 406415, doi:10.1007/s11434-012-5423-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J. Li, and H.-L. Ren, 2011: Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563569, doi:10.2151/jmsj.2011-510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J.-X. Zhao, L. Qi, and H.-L. Ren, 2013: The possible influence of a nonconvential El Nino on the severe autumn drought of 2009 in southwest China. J. Climate, 26, 83928405, doi:10.1175/JCLI-D-12-00851.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, and A. G. Turner, 2014: Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41, 40204026, doi:10.1002/2014GL060130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., L. Wang, B. Xiang, L. Qi, and J. He, 2015: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 13511366, doi:10.1007/s00382-014-2155-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 21
PDF Downloads 23 23 23

Combined Impacts of PDO and Two Types of La Niña on Climate Anomalies in Europe

View More View Less
  • 1 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Restricted access

Abstract

Combined impacts of the Pacific decadal oscillation (PDO) and two types of La Niña on climate anomalies in Europe are studied. Particularly, the conjunction of the negative PDO phase and two different types of La Niña events favors strong and significant North Atlantic Oscillation (NAO) pattern anomalies with opposite polarity. For the central Pacific (CP) La Niña, a clear positive NAO signal can be detected, which is accompanied by positive surface air temperature (SAT) anomaly and a dipolar structure of precipitation anomalies in Europe. In addition, a typical negative Pacific–North America (PNA) teleconnection pattern forms, including a high pressure anomaly over the southeastern United States, which may contribute to the development and maintenance of the NAO anomaly by strengthening the baroclinicity and the local eddy–mean flow interaction. However, for the eastern Pacific (EP) La Niña, a zonal wave train in the high latitudes can be observed, which is quite different from the typical PNA structure. Here, an anomalous anticyclone over southern Greenland supports a negative NAO pattern through the local eddy–mean flow interaction and the associated vorticity advection. Hence, reversed SAT and precipitation anomalies occur over Europe. Further analyses indicate that the wave trains emanating from the North Pacific and the synoptic eddy–mean flow interaction play essential roles in forming the anomalous NAO phases. The different wave trains for the CP and EP La Niña events may be attributed to the differences in the location and intensity of anomalous convection induced by different types of SST anomaly as well as by the corresponding background westerly wind anomalies in the upper troposphere.

Visiting Fellow of the Chinese Academy of Sciences.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Wen Chen, cw@post.iap.ac.cn

Abstract

Combined impacts of the Pacific decadal oscillation (PDO) and two types of La Niña on climate anomalies in Europe are studied. Particularly, the conjunction of the negative PDO phase and two different types of La Niña events favors strong and significant North Atlantic Oscillation (NAO) pattern anomalies with opposite polarity. For the central Pacific (CP) La Niña, a clear positive NAO signal can be detected, which is accompanied by positive surface air temperature (SAT) anomaly and a dipolar structure of precipitation anomalies in Europe. In addition, a typical negative Pacific–North America (PNA) teleconnection pattern forms, including a high pressure anomaly over the southeastern United States, which may contribute to the development and maintenance of the NAO anomaly by strengthening the baroclinicity and the local eddy–mean flow interaction. However, for the eastern Pacific (EP) La Niña, a zonal wave train in the high latitudes can be observed, which is quite different from the typical PNA structure. Here, an anomalous anticyclone over southern Greenland supports a negative NAO pattern through the local eddy–mean flow interaction and the associated vorticity advection. Hence, reversed SAT and precipitation anomalies occur over Europe. Further analyses indicate that the wave trains emanating from the North Pacific and the synoptic eddy–mean flow interaction play essential roles in forming the anomalous NAO phases. The different wave trains for the CP and EP La Niña events may be attributed to the differences in the location and intensity of anomalous convection induced by different types of SST anomaly as well as by the corresponding background westerly wind anomalies in the upper troposphere.

Visiting Fellow of the Chinese Academy of Sciences.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Wen Chen, cw@post.iap.ac.cn
Save