• Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, 839856, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 7195, doi:10.1007/s10584-006-9226-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., and L. Terray, 2014: Land–sea contrast, soil–atmosphere and cloud–temperature interactions: Interplays and roles in future summer European climate change. Climate Dyn., 42, 683699, doi:10.1007/s00382-013-1868-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., J. L. Dufresne, H. Le Treut, J. J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, doi:10.1007/s00382-003-0369-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., F. Couvreux, P.-H. Kamsu-Tamo, M. Leplay, F. Guichard, F. Favot, and E. O’Connor, 2012: Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa. J. Appl. Meteor. Climatol., 51, 534553, doi:10.1175/JAMC-D-11-051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., R. Vautard, and P. Yiou, 2009: Origins of the extremely warm European fall in 2006. Geophys. Res. Lett., 36, L06713, doi:10.1029/2009GL037339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, doi:10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917935, doi:10.1007/s00382-008-0473-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403, doi:10.1038/ngeo866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., S. Janicot, and P.-A. Monerie, 2013: Recent changes in air temperature, heat waves occurrences and atmospheric circulation in northern Africa. J. Geophys. Res. Atmos., 118, 536552, doi:10.1002/jgrd.50667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., J. Díaz, R. Trigo, J. Luterbacher, and E. Fischer, 2010: A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol., 40, 267306, doi:10.1080/10643380802238137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., 2010: Mechanisms of climate change in the semiarid African Sahel: The local view. J. Climate, 23, 743756, doi:10.1175/2009JCLI3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guichard, F., L. Kergoat, E. Mougin, F. Timouk, F. Baup, P. Hiernaux, and F. Lavenu, 2009: Surface thermodynamics and radiative budget in the Sahelian Gourma: Seasonal and diurnal cycles. J. Hydrol., 375, 161177, doi:10.1016/j.jhydrol.2008.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., B. Oueslati, B. Pohl, S. Rome, and S. Janicot, 2016: Trends of mean temperatures and warm extremes in northern tropical Africa (1961–2014) from observed and PPCA-reconstructed time series. J. Geophys. Res. Atmos., 121, 52985319, doi:10.1002/2015JD024303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J.-L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, doi:10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rome, S., B. Oueslati, V. Moron, B. Pohl, and A. Diedhiou, 2016: Les vagues de chaleur au Sahel: Définition et principales caractéristiques spatio-temporelles (1973-2014). XXIXe Colloque de l’Association Internationale de Climatologie, Besançon, France, AIP, 345–350.

  • Russo, S., A. F. Marchese, J. Sillmann, and G. Immé, 2016: When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett., 11, 054016, doi:10.1088/1748-9326/11/5/054016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, doi:10.1175/JTECH-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and G. Jendritzky, 2004: Climate change: Hot news from summer 2003. Nature, 432, 559560, doi:10.1038/432559a.

  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Shongwe, M. E., R. G. Graversen, G. J. van Oldenborgh, B. J. J. M. van den Hurk, and F. J. Doblas-Reyes, 2011: Energy budget of the extreme autumn 2006 in Europe. Climate Dyn., 36, 10551066, doi:10.1007/s00382-009-0689-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979: The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861873, doi:10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., G. Leng, and P. Y. Groisman, 2012: European hot summers associated with a reduction of cloudiness. J. Climate, 25, 36373644, doi:10.1175/JCLI-D-12-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G., 2007: How unusual was autumn 2006 in Europe? Climate Past, 3, 659668, doi:10.5194/cp-3-659-2007.

  • Vizy, E. K., and K. H. Cook, 2012: Mid-twenty-first-century changes in extreme events over northern and tropical Africa. J. Climate, 25, 57485767, doi:10.1175/JCLI-D-11-00693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., and R. E. Dickinson, 2013: Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Rev. Geophys., 51, 150185, doi:10.1002/rog.20009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/National Meteorological Center/Climate Analysis Center, 52–57. [Available online at https://www.esrl.noaa.gov/psd/enso/mei/WT1.pdf.]

  • Zhang, T., M. P. Hoerling, J. Perlwitz, D.-Z. Sun, and D. Murray, 2011: Physics of U.S. surface temperature response to ENSO. J. Climate, 24, 48744887, doi:10.1175/2011JCLI3944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Liang, G. Wang, Y. Yao, B. Jiang, and J. Cheng, 2016: Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sens., 8, 225, doi:10.3390/rs8030225.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 8 8 8

Characterization of Heat Waves in the Sahel and Associated Physical Mechanisms

View More View Less
  • 1 Centre de Recherche de Climatologie, UMR 6282 Biogéosciences, CNRS/Université de Bourgogne Franche-Comté, Dijon, France
  • | 2 Université Aix-Marseille, UM 34 CNRS, CEREGE, Aix-en-Provence, France, and Columbia University, Palisades, New York
  • | 3 Université Grenoble Alpes, LTHE UMR 5564, Grenoble, France
  • | 4 LOCEAN, Sorbonne Universités UPMC-IRD-MNHN, UMR 7159, Paris, France
Restricted access

Abstract

Great effort is made to address heat waves (HWs) in developed countries because of their devastating impacts on society, economy, and environment. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event in the western Sahel. This work aims at characterizing the Sahelian HWs during boreal spring seasons (April–May–June) and understanding the mechanisms associated with such extreme events. Over the last three decades, Sahelian HWs have been becoming more frequent, lasting longer, covering larger areas, and reaching higher intensities. The physical mechanisms associated with HWs are examined to assess the respective roles of atmospheric dynamics and radiative and turbulent fluxes by analyzing the surface energy budget. Results suggest that the greenhouse effect of water vapor is the main driver of HWs in the western Sahel, increasing minimum temperatures by enhanced downward longwave radiation. Atmospheric circulation plays an important role in sustaining these warm anomalies by advecting moisture from the Atlantic Ocean and the Guinean coasts into the Sahel. Maximum temperature anomalies are mostly explained by increased downward shortwave radiation due to a reduction in cloud cover. Interannual variability of HWs is affected by the delayed impact of El Niño–Southern Oscillation (ENSO), with anomalous temperature warming following warm ENSO events, resulting from an amplified water vapor feedback.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Boutheina Oueslati, oueslati@lsce.ipsl.fr

Abstract

Great effort is made to address heat waves (HWs) in developed countries because of their devastating impacts on society, economy, and environment. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event in the western Sahel. This work aims at characterizing the Sahelian HWs during boreal spring seasons (April–May–June) and understanding the mechanisms associated with such extreme events. Over the last three decades, Sahelian HWs have been becoming more frequent, lasting longer, covering larger areas, and reaching higher intensities. The physical mechanisms associated with HWs are examined to assess the respective roles of atmospheric dynamics and radiative and turbulent fluxes by analyzing the surface energy budget. Results suggest that the greenhouse effect of water vapor is the main driver of HWs in the western Sahel, increasing minimum temperatures by enhanced downward longwave radiation. Atmospheric circulation plays an important role in sustaining these warm anomalies by advecting moisture from the Atlantic Ocean and the Guinean coasts into the Sahel. Maximum temperature anomalies are mostly explained by increased downward shortwave radiation due to a reduction in cloud cover. Interannual variability of HWs is affected by the delayed impact of El Niño–Southern Oscillation (ENSO), with anomalous temperature warming following warm ENSO events, resulting from an amplified water vapor feedback.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Boutheina Oueslati, oueslati@lsce.ipsl.fr
Save