• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., R. W. Yang, Y. L. You, and W. Huang, 2009: The mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of Western Pacific. Sci. China Ser. D Earth Sci., 52, 18641870, doi:10.1007/s11430-009-0149-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1994: Monsoons over China. Adv. Atmos. Sci., 11, 252252, doi:10.1007/BF02666553.

  • Ding, Y. H., and J. C. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2009: Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quart. J. Roy. Meteor. Soc., 135, 15381559, doi:10.1002/qj.464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S. P. Xie, G. Huang, and K. M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 20232038, doi:10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, doi:10.1029/2001GL014523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Sci. Rep., 5, 16771, doi:10.1038/srep16771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X.-Z., and D.-Y. Gong, 2002: Interdecadal change in western Pacific subtropical high and climatic effects. J. Geogr. Sci., 12, 202209, doi:10.1007/BF02837475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Elsevier Academic Press, 535 pp.

  • Hu, Z. Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface air temperature. J. Geophys. Res., 102, 19 40319 412, doi:10.1029/97JD01052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., K. Hu, and S. P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, doi:10.1175/2010JCLI3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J. Y., and S. W. Wang, 1985: Investigations on variations of the subtropical high in the Western Pacific during historic times. Climatic Change, 7, 427440, doi:10.1007/BF00139057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y. Y., and X. F. Li, 2015: The interdecadal variation of the western Pacific subtropical high as measured by 500 hPa eddy geopotential height. Atmos. Oceanic Sci. Lett., 8, 371375, doi:10.3878/AOSL20150038.

    • Search Google Scholar
    • Export Citation
  • Huang, Y. Y., H. J. Wang, K. Fan, and Y. Q. Gao, 2015: The western Pacific subtropical high after the 1970s: Westward or eastward shift? Climate Dyn., 44, 20352047, doi:10.1007/s00382-014-2194-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 75747589, doi:10.1175/JCLI-D-12-00009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. F., R. Lu, and B. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329346, doi:10.1007/s00382-011-1274-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., and G. X. Wu, 2004: Progress in the study on the formation of the summertime subtropical anticyclone. Adv. Atmos. Sci., 21, 322342, doi:10.1007/BF02915562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., J. L. Hong, C. Liu, and P. F. Zhang, 2013: Meiyu flooding of Huaihe River valley and anomaly of seasonal variation of subtropical anticyclone over the western Pacific (in Chinese). Chin. J. Atmos. Sci., 27, 439450.

    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., 2002: Indices of the summertime western North Pacific subtropical high. Adv. Atmos. Sci., 19, 10041028, doi:10.1007/s00376-002-0061-5 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., and B. W. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan, 79, 12291241, doi:10.2151/jmsj.79.1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., L. Ying, and C.-S. Ryu, 2008: Relationship between the zonal displacement of the western Pacific subtropical high and the dominant modes of low-tropospheric circulation in summer. Prog. Nat. Sci., 18, 161165, doi:10.1016/j.pnsc.2007.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumura, S., S. Sugimoto, and T. Sato, 2015: Recent intensification of the western Pacific subtropical high associated with the East Asian summer monsoon. J. Climate, 28, 28732883, doi:10.1175/JCLI-D-14-00569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and Coauthors, 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115, doi:10.1029/2004JD005306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and S. Y. Xue, 1962: Circulation characteristics in association with persistent summer drought and flood in the Yangtze–Huaihe River reaches. Acta Meteor. Sin., 32, 118.

    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi:10.1029/2005GL022760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, S. W., and Z. C. Zhao, 1984: Relationship between eastern equatorial Pacific sea surface air temperature and subtropical high in the western Pacific. Trop. Ocean–Atmos. Newsl., 23, 1314.

    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Y. M. Liu, 2003: Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys. Res. Lett., 30, 1201, doi:10.1029/2002GL016209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and C. Wang, 2015: Has the western Pacific subtropical high extended westward since the late 1970s? J. Climate, 28, 54065413, doi:10.1175/JCLI-D-14-00618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., J. Chen, and Z. Wen, 2013: Precipitation–surface temperature relationship in the IPCC CMIP5 models. Adv. Atmos. Sci., 30, 766778, doi:10.1007/s00376-012-2130-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and S. Q. Sun, 2003: Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence. Adv. Atmos. Sci., 20, 921933, doi:10.1007/BF02915515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and S. Q. Sun, 2005: The characteristics of longitudinal movement of the subtropical high in the western Pacific in the pre-rainy season in South China. Adv. Atmos. Sci., 22, 392400, doi:10.1007/BF02918752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., 2015: Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades. Sci. Bull., 60, 12221224, doi:10.1007/s11434-015-0824-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J. H., G. L. Feng, J. Yang, R. Zhi, and Q. G. Wang, 2012: Analysis of the distribution of the large-scale drought/flood of summer in China under different types of the western Pacific subtropical high (in Chinese). Acta Meteor. Sin., 70, 10211031.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z. G., 1999: The Summer Droughts and Floods in China and Their Environmental Field (in Chinese). Meteorological Press, 297 pp.

  • Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi:10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, doi:10.1175/2008JCLI2527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. L., T. Wang, and H. J. Wang, 2016: Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Sci. Bull., 61, 416424, doi:10.1007/s11434-016-1012-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 5 5 5

A Dynamic Index for the Westward Ridge Point Variability of the Western Pacific Subtropical High during Summer

View More View Less
  • 1 Department of Atmospheric Sciences, Yunnan University, and Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Kunming, China
  • | 2 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Department of Atmospheric Sciences, Yunnan University, Kunming, China
  • | 3 Department of Atmospheric Sciences, Yunnan University, and Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Kunming, China
Restricted access

Abstract

Based on the ridge line of the western Pacific subtropical high (WPSH) and the theory of gradient wind approximation, a dynamic index for the westward ridge point (WRPI) of the WPSH is defined. Owing to its definition, the new dynamic index can be used to analyze the evolution of the WPSH at various time scales over most isobaric surfaces. The WRPI comprises two dimensions labeled ZWRPI and MWRPI, which depict the zonal and meridional movement, respectively, of the westward ridge point of the WPSH. The rationality and reliability of the dynamic index were validated using reanalysis atmospheric circulation, outgoing longwave radiation, surface air temperature, and rainfall data. The WRPI series revealed that the westward ridge point of the WPSH generally advances poleward while withdrawing eastward. Furthermore, there were close relationships between the WRPI, atmospheric circulation, outgoing longwave radiation, and precipitation over East Asia and the western Pacific in summer. The significant correlation coefficients indicated that the ZWRPI and the MWRPI can reflect the impact of the zonal and meridional movement of the WPSH on the climate over East Asia and the western Pacific. The ZWRPI has no significant linear trend at the interdecadal time scale, indicating that the WPSH did not significantly extend westward in summer. The slight decrease of the MWRPI suggests that the WPSH moves southward but with an insignificant trend. Compared with indices proposed in previous studies, the WRPI showed advantages in objectivity, reliability, predictability, practicability, and therefore extensive potential for application.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Jie Cao, caoj@ynu.edu.cn

Abstract

Based on the ridge line of the western Pacific subtropical high (WPSH) and the theory of gradient wind approximation, a dynamic index for the westward ridge point (WRPI) of the WPSH is defined. Owing to its definition, the new dynamic index can be used to analyze the evolution of the WPSH at various time scales over most isobaric surfaces. The WRPI comprises two dimensions labeled ZWRPI and MWRPI, which depict the zonal and meridional movement, respectively, of the westward ridge point of the WPSH. The rationality and reliability of the dynamic index were validated using reanalysis atmospheric circulation, outgoing longwave radiation, surface air temperature, and rainfall data. The WRPI series revealed that the westward ridge point of the WPSH generally advances poleward while withdrawing eastward. Furthermore, there were close relationships between the WRPI, atmospheric circulation, outgoing longwave radiation, and precipitation over East Asia and the western Pacific in summer. The significant correlation coefficients indicated that the ZWRPI and the MWRPI can reflect the impact of the zonal and meridional movement of the WPSH on the climate over East Asia and the western Pacific. The ZWRPI has no significant linear trend at the interdecadal time scale, indicating that the WPSH did not significantly extend westward in summer. The slight decrease of the MWRPI suggests that the WPSH moves southward but with an insignificant trend. Compared with indices proposed in previous studies, the WRPI showed advantages in objectivity, reliability, predictability, practicability, and therefore extensive potential for application.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Jie Cao, caoj@ynu.edu.cn
Save