• Cavalieri, D. J., and C. L. Parkinson, 1987: On the relationship between atmospheric circulation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas. J. Geophys. Res., 92 (C7), 71417162, doi:10.1029/JC092iC07p07141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 1983: Effects of sampling errors in statistical estimation. Deep Sea Res., 30A, 10831103, doi:10.1016/0198-0149(83)90062-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H. W., R. B. Alley, and F. Zhang, 2016: Interannual Arctic sea ice variability and associated winter weather patterns: A regional perspective for 1979–2014. J. Geophys. Res. Atmos., 121, 14 43314 455, doi:10.1002/2016JD024769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Close, S., M.-N. Houssais, and C. Herbaut, 2015: Regional dependence in the timing of onset of rapid decline in Arctic sea ice concentration. J. Geophys. Res. Oceans, 120, 80778098, doi:10.1002/2015JC011187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000 (updated 2015): Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2. NASA DAAC at the National Snow and Ice Data Center. [Available online at http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html.]

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., S. Tietsche, and E. Hawkins, 2014: Pan-Arctic and regional sea ice predictability: Initialization month dependence. J. Climate, 27, 43714390, doi:10.1175/JCLI-D-13-00614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, doi:10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, doi:10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a time scale of weeks and its relation to atmospheric forcing. J. Climate, 7, 18971914, doi:10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbaut, C., M.-N. Houssais, S. Close, and A.-C. Blaizot, 2015: Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep-Sea Res. I, 106, 97115, doi:10.1016/j.dsr.2015.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, doi:10.1175/JCLI-D-11-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawasaki, T., and H. Hasumi, 2016: The inflow of Atlantic water at the Fram Strait and its interannual variability. J. Geophys. Res., 121, 502519, doi:10.1002/2015JC011375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, N., and M. Wakatsuchi, 1999: Processes controlling the advance and retreat of sea ice in the Sea of Okhotsk. J. Geophys. Res., 104, 11 13711 150, doi:10.1029/1999JC900004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S., R. Drucker, and K. Yamashita, 1998: The production of ice and dense shelf water in the Okhotsk Sea polynyas. J. Geophys. Res., 103, 27 77127 782, doi:10.1029/98JC02242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., S. Drobot, C. Fowler, W. Emery, and R. Barry, 2007: On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Res. Lett., 34, L03711, doi:10.1029/2006GL028269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., K. I. Ohshima, and S. Nagai, 2010: What determines the maximum sea ice extent in the Sea of Okhotsk? Importance of ocean thermal condition from the Pacific. J. Geophys. Res., 115, C12031, doi:10.1029/2009JC006070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanowatari, T., T. Nakamura, K. Uchimoto, H. Uehara, H. Mitsudera, K. I. Ohshima, H. Hasumi, and M. Wakatsuchi, 2015: Causes of the multidecadal-scale warming of the intermediate water in the Okhotsk Sea and western subarctic North Pacific. J. Climate, 28, 714736, doi:10.1175/JCLI-D-14-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., S. Rodionov, S. Minobe, and N. Bond, 2008: North Pacific regime shifts: Definitions, issues and recent transitions. Prog. Oceanogr., 77, 92102, doi:10.1016/j.pocean.2008.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 1990: The impact of the Siberian high and Aleutian low on the sea-ice cover of the Sea of Okhotsk. Ann. Glaciol., 14, 226229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, doi:10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A. Y., and M. A. Johnson, 1997: Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res., 102 (C6), 12 49312 514, doi:10.1029/97JC00738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, doi:10.1029/2004GL019448.

  • Rogers, J. C., and H. van Loon, 1979: The seesaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Wea. Rev., 107, 509519, doi:10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., and M.-N. Houssais, 2011: Forcing of oceanic heat anomalies by air–sea interactions in the Nordic Seas area. J. Geophys. Res., 116, C01006, doi:10.1029/2009JC005944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784, doi:10.1175/JCLI3885.1.

  • Tachibana, Y., M. Honda, and K. Takeuchi, 1996: The abrupt decrease of the sea ice over the southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the Aleutian low. J. Meteor. Soc. Japan, 74, 579584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukita, J., M. Honga, H. Nakamura, Y. Tachibana, D. J. Cavalieri, C. L. Parkinson, H. Koide, and K. Yamamoto, 2007: Northern Hemisphere sea ice variability: Lag structure and its implications. Tellus, 59A, 261272, doi:10.1111/j.1600-0870.2006.00223.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and C. M. Johnson, 1979: Interannual atmospheric variability and associated fluctuations in Arctic Sea ice extent. J. Geophys. Res., 84 (C11), 69156928, doi:10.1029/JC084iC11p06915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Amer. Meteor. Soc., 80, 245255, doi:10.1175/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., and X. Yuan, 2014: The early winter sea ice variability under the recent Arctic climate shift. J. Climate, 27, 50925110, doi:10.1175/JCLI-D-13-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, D., L. A. Mysak, and S. A. Venegas, 1999: Decadal-to-interdecadal fluctuations of Arctic sea ice cover and the atmospheric circulation during 1954–1994. Atmos.–Ocean, 37, 389415, doi:10.1080/07055900.1999.9649633.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 9 9 9

The Arctic Winter Sea Ice Quadrupole Revisited

View More View Less
  • 1 Sorbonne Universités (UPMC, Univ Paris 06), CNRS-IRD-MNHN, LOCEAN Laboratory, Paris, France
Restricted access

Abstract

The dominant mode of Arctic sea ice variability in winter is often maintained to be represented by a quadrupole structure, comprising poles of one sign in the Okhotsk, Greenland, and Barents Seas and of opposing sign in the Labrador and Bering Seas, forced by the North Atlantic Oscillation. This study revisits this large-scale winter mode of sea ice variability using microwave satellite and reanalysis data. It is found that the quadrupole structure does not describe a significant covariance relationship among all four component poles. The first empirical orthogonal mode, explaining covariability in the sea ice of the Barents, Greenland, and Okhotsk Seas, is linked to the Siberian high, while the North Atlantic Oscillation only exhibits a significant relationship with the Labrador Sea ice, which varies independently as the second mode. The principal components are characterized by a strong low-frequency signal; because the satellite record is still short, these results suggest that statistical analyses should be applied cautiously.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: S. Close, sally.close@locean-ipsl.upmc.fr

Abstract

The dominant mode of Arctic sea ice variability in winter is often maintained to be represented by a quadrupole structure, comprising poles of one sign in the Okhotsk, Greenland, and Barents Seas and of opposing sign in the Labrador and Bering Seas, forced by the North Atlantic Oscillation. This study revisits this large-scale winter mode of sea ice variability using microwave satellite and reanalysis data. It is found that the quadrupole structure does not describe a significant covariance relationship among all four component poles. The first empirical orthogonal mode, explaining covariability in the sea ice of the Barents, Greenland, and Okhotsk Seas, is linked to the Siberian high, while the North Atlantic Oscillation only exhibits a significant relationship with the Labrador Sea ice, which varies independently as the second mode. The principal components are characterized by a strong low-frequency signal; because the satellite record is still short, these results suggest that statistical analyses should be applied cautiously.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: S. Close, sally.close@locean-ipsl.upmc.fr
Save