• Allan, R., 1988: El Niño–Southern Oscillation influences in the Australasian region. Prog. Phys. Geogr., 12, 313348, doi:10.1177/030913338801200301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, doi:10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 18471856, doi:10.1007/s00382-013-2011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, O. B., J. H. Christensen, B. Machenhauer, and M. Botzet, 1998: Very high-resolution regional climate simulations over Scandinavia—Present climate. J. Climate, 11, 32043229, doi:10.1175/1520-0442(1998)011<3204:VHRRCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15, 383422, doi:10.1007/BF00240465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2013: Predictability of the Ningaloo Niño/Niña. Sci. Rep., 3, 2892, doi:10.1038/srep02892.

  • Doi, T., and Coauthors, 2014: Study on the predictability of climate variations and their mechanisms. Annual Rep. of the Earth Simulator Center April 2013–March 2014, Center for Earth Information Science and Technology, 49–54. [Available online at http://www.jamstec.go.jp/ceist/j/publication/annual/annual2013/pdf/2project/chapter1/49masumoto.pdf.]

  • Doi, T., S. K. Behera, and T. Yamagata, 2015: An interdecadal regime shift in rainfall predictability related to the Ningaloo Niño in the late 1990s. J. Geophys. Res. Oceans, 120, 13881396, doi:10.1002/2014JC010562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2016: Improved seasonal prediction using the SINTEX-F2 coupled model. J. Adv. Model. Earth Syst., 8, 18471867, doi:10.1002/2016MS000744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and M. F. McCabe, 2010: Regional climate simulation over Australia’s Murray-Darling basin: A multitemporal assessment. J. Geophys. Res., 115, D14114, doi:10.1029/2010JD013816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P., M. Ekström, and F. Ji, 2012: Evaluating the performance of a WRF physics ensemble over south-east Australia. Climate Dyn., 39, 12411258, doi:10.1007/s00382-011-1244-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, doi:10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 23252347, doi:10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, and M. C. Wheeler, 2011: Seasonal prediction of Australian summer monsoon rainfall. The Global Monsoon System, 2nd ed. C. P. Chang et al., Eds., World Scientific, 73–83.

    • Crossref
    • Export Citation
  • Hendon, H. H., E.-P. Lim, and G. Liu, 2012: The role of air–sea interaction for prediction of Australian summer monsoon rainfall. J. Climate, 25, 12781290, doi:10.1175/JCLI-D-11-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., J. Kala, A. J. Pitman, C. Carouge, J. P. Evans, V. Haverd, and D. Mocko, 2014: Impact of land surface initialization approach on subseasonal forecast skill: A regional analysis in the southern hemisphere. J. Hydrometeor., 15, 300319, doi:10.1175/JHM-D-13-05.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., J. M. Done, C. L. Bruyere, C. Cooper, and A. Suzuki, 2010: Model investigations of the effects of climate variability and change on future Gulf of Mexico tropical cyclone activity. Proc. Offshore Technology Conf., Houston, TX, Offshore Technology Conf., OTC 20690, doi:10.4043/20690-MS.

    • Crossref
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for bulk parameterization of cloud and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., and B. C. Trewin, 2000: On the relationships between the El Niño–Southern Oscillation and Australian land surface temperature. Int. J. Climatol., 20, 697719, doi:10.1002/1097-0088(20000615)20:7<697::AID-JOC499>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., W. Wang, and R. Faucett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kala, J., J. Andrys, T. J. Lyons, I. J. Foster, and B. J. Evans, 2015: Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia. Climate Dyn., 44, 633659, doi:10.1007/s00382-014-2160-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. K. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 14631482, doi:10.1007/s00382-013-1961-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, E. J., and S. Y. Hong, 2010: Impact of air–sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A. D., N. P. Klingaman, L. V. Alexander, M. G. Donat, N. C. Jourdain, and P. Maher, 2014: Extreme rainfall variability in Australia: Patterns, drivers, and predictability. J. Climate, 27, 60356050, doi:10.1175/JCLI-D-13-00715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., M. Hoerling, and B. Rajagopalan, 2005: Advancing dynamical prediction of Indian monsoon rainfall. Geophys. Res. Lett., 32, L08704, doi:10.1029/2004GL021979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, doi:10.1175/JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, doi:10.1175/JCLI4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, doi:10.1175/2007JCLI1412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2008: NEMO ocean engine, version 3.0. Note du Pôle de Modélisation de l’Institut Pierre-Simon Laplace 27, 217 pp.

  • Masson, S., P. Terray, G. Madec, J. J. Luo, T. Yamagata, and K. Takahashi, 2012: Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dyn., 39, 681707, doi:10.1007/s00382-011-1247-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and Southern Oscillation. Mon. Wea. Rev., 111, 19982004, doi:10.1175/1520-0493(1983)111<1998:SRBARA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1997: Regional climate modeling. Meteor. Atmos. Phys., 63, 105117, doi:10.1007/BF01025367.

  • McGregor, J. L., and K. Walsh, 1993: Nested simulations of perpetual January climate over the Australian region. J. Geophys. Res., 98, 23 28323 290, doi:10.1029/93JD02333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misra, V., and M. Kanamitsu, 2004: Anomaly nesting: A methodology to downscale seasonal climate simulations from AGCMs. J. Climate, 17, 32493262, doi:10.1175/1520-0442(2004)017<3249:ANAMTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narita, M., and S. Ohmori, 2007: Improving precipitation forecasts by the operational nonhydrostatic mesoscale model with the Kain–Fritsch convective parameterization and cloud microphysics. 12th Conf. on Mesoscale Processes, Waterville Valley, NH, Amer. Metor. Soc., 3.7. [Available online at http://ams.confex.com/ams/pdfpapers/126017.pdf.]

  • Nicholls, N., J. L. McBride, and R. J. Ormerod, 1982: On predicting the onset of the Australian wet season at Darwin. Mon. Wea. Rev., 110, 1417, doi:10.1175/1520-0493(1982)110<0014:OPTOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S. Q., D. L. Liu, Z. B. Sun, and Y. Li, 2012: Recent advances in regional air–sea coupled models. Sci. China Earth Sci., 55, 13911405, doi:10.1007/s11430-012-4386-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381404.

  • Ratnam, J. V., F. Giorgi, A. Kaginalkar, and S. Cozzini, 2009: Simulation of the Indian monsoon using the RegCM3–ROMS regional coupled model. Climate Dyn., 33, 119139, doi:10.1007/s00382-008-0433-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, Y. Masumoto, K. Takahashi, and T. Yamagata, 2012: A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Climate Dyn., 39, 22072217, doi:10.1007/s00382-011-1190-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., and Coauthors, 2013: Dynamical downscaling of austral summer climate forecasts over southern Africa using a regional coupled model. J. Climate, 26, 60156032, doi:10.1175/JCLI-D-12-00645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., Y. Morioka, S. K. Behera, and T. Yamgata, 2015: A model study of regional air–sea interaction in the austral summer precipitation over southern Africa. J. Geophys. Res. Atmos., 120, 23422357, doi:10.1002/2014JD022154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, T. Doi, and S. B. Ratna, 2016: Improvements to the WRF seasonal hindcasts over South Africa by bias correcting the driving SINTEX-F2v CGCM fields. J. Climate, 29, 28152829, doi:10.1175/JCLI-D-15-0435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, doi:10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max-Planck-Institut für Meteorologie Tech. Rep. 349, 140 pp. [Available online at http://mms.dkrz.de/pdf/klimadaten/service_support/documents/mpi_report_349.pdf.]

    • Search Google Scholar
    • Export Citation
  • Sasaki, W., K. J. Richards, and J. J. Luo, 2012: Role of vertical mixing originating from small vertical scale structures above and within the equatorial thermocline in an OGCM. Ocean Modell., 57–58, 2942, doi:10.1016/j.ocemod.2012.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., K. J. Richards, and J. J. Luo, 2013: Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM. Climate Dyn., 41, 443453, doi:10.1007/s00382-012-1593-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2014a: The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM. Climate Dyn., 44, 191202, doi:10.1007/s00382-014-2133-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, W., T. Doi, K. J. Richards, and Y. Masumoto, 2014b: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 25392552, doi:10.1007/s00382-014-2072-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., doi:10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.]

  • Timbal, B., S. Power, R. Colman, J. Viviand, and S. Lirola, 2002: Does soil moisture influence climate variability and predictability over Australia? J. Climate, 15, 12301238, doi:10.1175/1520-0442(2002)015<1230:DSMICV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valcke, S., A. Caubel, R. Vogelsang, and D. Declat, 2004: OASIS3 Ocean–Atmosphere Sea Ice Soil user’s guide. CERFACS Tech. Rep. TR/CMGC/04/68, 70 pp.

  • Walsh, K., and J. L. McGregor, 1995: January and July climate simulations over the Australian region using a limited-area model. J. Climate, 8, 23872403, doi:10.1175/1520-0442(1995)008<2387:JAJCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and J. L. McBride, 2005: Australian–Indonesian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer Praxis Books, 125–173, doi:10.1007/3-540-27250-X_5.

    • Search Google Scholar
    • Export Citation
  • White, R. H., and R. Toumi, 2013: The limitations of bias correcting regional climate model inputs. Geophys. Res. Lett., 40, 29072912, doi:10.1002/grl.50612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., and Z.-L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 62716286, doi:10.1175/JCLI-D-12-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Dynamical Downscaling of SINTEX-F2v CGCM Seasonal Retrospective Austral Summer Forecasts over Australia

View More View Less
  • 1 Application Laboratory, JAMSTEC, Yokohama, Japan
Restricted access

Abstract

An ensemble of 1-month-lead seasonal retrospective forecasts generated by the Scale Interaction Experiment (SINTEX)–Frontier Research Center for Global Change (FRCGC), version 2 tuned for performance on a vector supercomputer (SINTEX-F2v), coupled global circulation model (CGCM) were downscaled using the Weather Research and Forecasting (WRF) Model to improve the forecast of the austral summer precipitation and 2-m air temperatures over Australia. A set of four experiments was carried out with the WRF Model to improve the forecasts. The first was to drive the WRF Model with the SINTEX-F2v output, and the second was to bias correct the mean component of the SINTEX-F2v forecast and drive the WRF Model with the corrected fields. The other experiments were to use the SINTEX-F2v forecasts and the mean bias-corrected SINTEX-F2v forecasts to drive the WRF Model coupled to a simple mixed layer ocean model. Evaluation of the forecasts revealed the WRF Model driven by bias-corrected SINTEX-F2v forecasts to have a better spatial and temporal representation of forecast precipitation and 2-m air temperature, compared to SINTEX-F2v forecasts. Using a regional coupled model with the bias-corrected SINTEX-F2v forecast as the driver further improved the skill of the precipitation forecasts. The improvement in the WRF Model forecasts is due to better representation of the variables in the bias-corrected SINTEX-F2v forecasts driving the WRF Model. The study brings out the importance of including air–sea interactions and correcting the global forecasts for systematic biases before downscaling them for societal applications over Australia. These results are important for potentially improving austral summer seasonal forecasts over Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: J. V. Ratnam, jvratnam@jamstec.go.jp

Abstract

An ensemble of 1-month-lead seasonal retrospective forecasts generated by the Scale Interaction Experiment (SINTEX)–Frontier Research Center for Global Change (FRCGC), version 2 tuned for performance on a vector supercomputer (SINTEX-F2v), coupled global circulation model (CGCM) were downscaled using the Weather Research and Forecasting (WRF) Model to improve the forecast of the austral summer precipitation and 2-m air temperatures over Australia. A set of four experiments was carried out with the WRF Model to improve the forecasts. The first was to drive the WRF Model with the SINTEX-F2v output, and the second was to bias correct the mean component of the SINTEX-F2v forecast and drive the WRF Model with the corrected fields. The other experiments were to use the SINTEX-F2v forecasts and the mean bias-corrected SINTEX-F2v forecasts to drive the WRF Model coupled to a simple mixed layer ocean model. Evaluation of the forecasts revealed the WRF Model driven by bias-corrected SINTEX-F2v forecasts to have a better spatial and temporal representation of forecast precipitation and 2-m air temperature, compared to SINTEX-F2v forecasts. Using a regional coupled model with the bias-corrected SINTEX-F2v forecast as the driver further improved the skill of the precipitation forecasts. The improvement in the WRF Model forecasts is due to better representation of the variables in the bias-corrected SINTEX-F2v forecasts driving the WRF Model. The study brings out the importance of including air–sea interactions and correcting the global forecasts for systematic biases before downscaling them for societal applications over Australia. These results are important for potentially improving austral summer seasonal forecasts over Australia.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: J. V. Ratnam, jvratnam@jamstec.go.jp
Save