• Arnal, L., M.-H. Ramos, E. Coughlan de Perez, H. L. Cloke, E. Stephens, F. Wetterhall, S. J. van Andel, and F. Pappenberger, 2016: Willingness-to-pay for a probabilistic flood forecast: A risk-based decision-making game. Hydrol. Earth Syst. Sci., 20, 31093128, doi:10.5194/hess-20-3109-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, S., and S. Lerch, 2015: Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting. Quart. J. Roy. Meteor. Soc., 141, 22892299, doi:10.1002/qj.2521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. H. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellprat, O., and F. Doblas-Reyes, 2016: Attribution of extreme weather and climate events overestimated by unreliable climate simulations. Geophys. Res. Lett., 43, 21582164, doi:10.1002/2015GL067189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, J. C., M. R. Grose, S. P. Corney, C. J. White, G. K. Holz, J. J. Katzfey, D. A. Post, and N. L. Bindoff, 2014: Performance of an empirical bias-correction of a high-resolution climate dataset. Int. J. Climatol., 34, 21892204, doi:10.1002/joc.3830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, J. C., Q. J. Wang, M. Li, D. E. Robertson, and A. Schepen, 2016: Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model. Water Resour. Res., 52, 82388259, doi:10.1002/2016WR019193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürger, G., S. R. Sobie, A. J. Cannon, A. T. Werner, and T. Q. Murdock, 2013: Downscaling extremes: An intercomparison of multiple methods for future climate. J. Climate, 26, 34293449, doi:10.1175/JCLI-D-12-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crochemore, L., M.-H. Ramos, and F. Pappenberger, 2016: Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrol. Earth Syst. Sci., 20, 36013618, doi:10.5194/hess-20-3601-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, G. N., 1985: Extended streamflow forecasting using NWSRFS. J. Water Resour. Plann. Manage., 111, 157170, doi:10.1061/(ASCE)0733-9496(1985)111:2(157).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., X. Yan, P. A. Dirmeyer, M. Fennessy, and E. Altshuler, 2014: Changes in seasonal predictability due to global warming. J. Climate, 27, 300311, doi:10.1175/JCLI-D-13-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus, 57A, 234252, doi:10.1111/j.1600-0870.2005.00104.x.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69B, 243268, doi:10.1111/j.1467-9868.2007.00587.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, doi:10.5194/hess-16-3383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawthorne, S., Q. J. Wang, A. Schepen, and D. Robertson, 2013: Effective use of general circulation model outputs for forecasting monthly rainfalls to long lead times. Water Resour. Res., 49, 54275436, doi:10.1002/wrcr.20453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopson, T. M., and P. J. Webster, 2010: A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. J. Hydrometeor., 11, 618641, doi:10.1175/2009JHM1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, W.-R., and A. H. Murphy, 1986: The attributes diagram—A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecast., 2, 285293, doi:10.1016/0169-2070(86)90048-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2015: IPCC workshop on regional climate projections and their use in impacts and risk analysis studies. T. F. Stocker et al., Eds., IPCC Workshop Rep., 171 pp. [Available online at http://www.ipcc.ch/pdf/supporting-material/RPW_WorkshopReport.pdf.]

  • Kim, K. B., H.-H. Kwon, and D. W. Han, 2016: Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme. Hydrol. Earth Syst. Sci., 20, 20192034, doi:10.5194/hess-20-2019-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krzysztofowicz, R., 1999: Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour. Res., 35, 27392750, doi:10.1029/1999WR900099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Y. Chen, Y. Xue, and D. Behringer, 2015: An analysis of the temporal evolution of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 32043213, doi:10.1175/MWR-D-15-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme, 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381, doi:10.1002/joc.3518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerch, S., and T. L. Thorarinsdottir, 2013: Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus, 65A, 21206, http://dx.doi.org/10.3402/tellusa.v65i0.21206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., E. Sinha, D. E. Horton, N. S. Diffenbaugh, and A. M. Michalak, 2014: Joint bias correction of temperature and precipitation in climate model simulations. J. Geophys. Res. Atmos., 119, 13 15313 162, doi:10.1002/2014JD022514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2015: Comparison between observed and model-simulated atmospheric circulation patterns associated with extreme temperature days over North America using CMIP5 historical simulations. J. Climate, 28, 20632079, doi:10.1175/JCLI-D-13-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, doi:10.1175/JCLI-D-12-00821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2016: Bias correcting climate change simulations—A critical review. Curr. Climate Change Rep., 2, 211220, doi:10.1007/s40641-016-0050-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., D. Hudson, M. C. Wheeler, O. Alves, H. H. Hendon, M. J. Pook, and J. S. Risbey, 2014: Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Climate Dyn., 43, 19151937, doi:10.1007/s00382-013-2016-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehrotra, R., and A. Sharma, 2016: A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: Implications for downscaling. J. Climate, 29, 35193539, doi:10.1175/JCLI-D-15-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., S. Shukla, D. P. Lettenmaier, and L.-C. Chen, 2012: Do climate forecast system (CFSv2) forecasts improve seasonal soil moisture prediction? Geophys. Res. Lett., 39, L23703, doi:10.1029/2012GL053598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF Seasonal Forecast System (System 4). ECMWF Tech. Memo. 656, 49 pp.

  • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281293, doi:10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, Z. L., Q. J. Wang, J. C. Bennett, A. Schepen, F. Pappenberger, P. Pokhrel, and Z. R. Wang, 2014: Statistical calibration and bridging of ECMWF System4 outputs for forecasting seasonal precipitation over China. J. Geophys. Res. Atmos., 119, 71167135, doi:10.1002/2013JD021162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, doi:10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., 2016: Use and communication of probabilistic forecasts, statistical analysis and data mining. Stat. Anal. Data Min.: ASA Data Sci. J., 9, 397410, doi:10.1002/sam.11302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajczak, J., S. Kotlarski, and C. Schär, 2016: Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths? J. Climate, 29, 16051615, doi:10.1175/JCLI-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, D. E., D. L. Shrestha, and Q. J. Wang, 2013: Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci., 17, 35873603, doi:10.5194/hess-17-3587-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schepen, A., and Q. J. Wang, 2014: Ensemble forecasts of monthly catchment rainfall out to long lead times by post-processing coupled general circulation model output. J. Hydrol., 519, 29202931, doi:10.1016/j.jhydrol.2014.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, D. L., D. E. Robertson, J. C. Bennett, and Q. J. Wang, 2015: Improving precipitation forecasts by generating ensembles through postprocessing. Mon. Wea. Rev., 143, 36423663, doi:10.1175/MWR-D-14-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S., and D. P. Lettenmaier, 2013: Multi-RCM ensemble downscaling of NCEP CFS winter season forecasts: Implications for seasonal hydrologic forecast skill. J. Geophys. Res. Atmos., 118, 10 77010 790, doi:10.1002/jgrd.50628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voisin, N., J. C. Schaake, and D. P. Lettenmaier, 2010: Calibration and downscaling methods for quantitative ensemble precipitation forecasts. Wea. Forecasting, 25, 16031627, doi:10.1175/2010WAF2222367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q. J., and D. E. Robertson, 2011: Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res., 47, W02546, doi:10.1029/2010WR009333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q. J., D. L. Shrestha, D. E. Robertson, and P. Pokhrel, 2012: A log-sinh transformation for data normalization and variance stabilization. Water Resour. Res., 48, W05514, doi:10.1029/2011WR010973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, doi:10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, G., D. Maraun, M. Vrac, M. Widmann, J. M. Eden, and T. Kent, 2014: Stochastic model output statistics for bias correcting and downscaling precipitation including extremes. J. Climate, 27, 69406959, doi:10.1175/JCLI-D-13-00604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and D. P. Lettenmaier, 2006: A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Amer. Meteor. Soc., 87, 16991712, doi:10.1175/BAMS-87-12-1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., and J. C. Schaake, 2008: Correcting errors in streamflow forecast ensemble mean and spread. J. Hydrometeor., 9, 132148, doi:10.1175/2007JHM862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., A. Kumar, and D. P. Lettenmaier, 2005: A retrospective assessment of National Centers for Environmental Prediction climate model–based ensemble hydrologic forecasting in the western United States. J. Geophys. Res., 110, D04105, doi:10.1029/2004JD004508.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2016: An experimental seasonal hydrological forecasting system over the Yellow River basin—Part 2: The added value from climate forecast models. Hydrol. Earth Syst. Sci., 20, 24532466, doi:10.5194/hess-20-2453-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, and Z. G. Ma, 2015: A review on climate-model-based seasonal hydrologic forecasting: Physical understanding and system development. Wiley Interdiscip. Rev.: Water, 2, 523536, doi:10.1002/wat2.1088.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 41 41
PDF Downloads 26 26 26

How Suitable is Quantile Mapping For Postprocessing GCM Precipitation Forecasts?

View More View Less
  • 1 CSIRO Land and Water, Clayton, Victoria, Australia
  • | 2 CSIRO Land and Water, Dutton Park, Queensland, Australia
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
  • | 4 CSIRO Land and Water, Clayton, Victoria, Australia
  • | 5 Irstea, Hydrosystems and Bioprocesses Research Unit, Antony, France
Restricted access

Abstract

GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property called “coherence.” This study evaluates the effectiveness of QM in achieving these aims by applying it to precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in correcting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is because QM ignores the correlation between raw ensemble forecasts and observations. When raw forecasts are not significantly positively correlated with observations, QM tends to produce negatively skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for postprocessing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative postprocessing methods based on ensemble model output statistics (EMOS) are available that achieve not only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the Bayesian joint probability modeling approach.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tongtiegang Zhao, tony.zhao@csiro.au

Abstract

GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property called “coherence.” This study evaluates the effectiveness of QM in achieving these aims by applying it to precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in correcting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is because QM ignores the correlation between raw ensemble forecasts and observations. When raw forecasts are not significantly positively correlated with observations, QM tends to produce negatively skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for postprocessing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative postprocessing methods based on ensemble model output statistics (EMOS) are available that achieve not only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the Bayesian joint probability modeling approach.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Tongtiegang Zhao, tony.zhao@csiro.au
Save