• Bombardi, R. J., and L. M. V. Carvalho, 2011: The South Atlantic dipole and variations in the characteristics of the South American monsoon in the WCRP-CMIP3 multi-model simulations. Climate Dyn., 36, 20912102, doi:10.1007/s00382-010-0836-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., L. M. V. Carvalho, C. Jones, and M. S. Reboita, 2014: Precipitation over eastern South America and the South Atlantic sea surface temperature during neutral ENSO periods. Climate Dyn., 42, 15531568, doi:10.1007/s00382-013-1832-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabos, W., and Coauthors, 2017: The South Atlantic anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Climate Dyn., doi:10.1007/s00382-016-3319-9, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., M. P. Hoerling, and R. M. Dole, 2001: The origin of the subtropical anticyclones. J. Atmos. Sci., 58, 18271835, doi:10.1175/1520-0469(2001)058<1827:TOOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 2000: The south Indian convergence zone and interannual variability over southern Africa. J. Climate, 13, 37893804, doi:10.1175/1520-0442(2000)013<3789:TSICZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, J. C., 1986: Statistics and Data Analysis in Geology. 2nd ed. John Wiley and Sons, 646 pp.

  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, doi:10.1175/JCLI-D-11-00523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Fogt, R., and D. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, doi:10.1175/JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, doi:10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and D. Luo, 2010: The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci., 67, 28542870, doi:10.1175/2010JAS3311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grassi, B., G. Redaelli, and G. Visconti, 2005: Simulation of polar Antarctic trends: Influence of tropical SST. Geophys. Res. Lett., 32, L23806, doi:10.1029/2005GL023804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., E. J. D. Campos, W. Hazeleger, C. Severijns, A. R. Piola, and F. Molteni, 2005: Dominant modes of variability in the South Atlantic: A study with a hierarchy of ocean–atmosphere models. J. Climate, 18, 17191735, doi:10.1175/JCLI3370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1991: Climate Dynamics of the Tropics. Kluwer, 488 pp.

    • Crossref
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2009: Variability in sea-surface temperature and winds in the tropical south-east Atlantic Ocean and regional rainfall relationships. Int. J. Climatol., 29, 1121, doi:10.1002/joc.1711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77, 12871291.

  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of SST and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, doi:10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., C. R. Mechoso, C. Wang, and J. D. Neelin, 2013: Interhemispheric influence of the northern summer monsoons on the southern subtropical anticyclones. J. Climate, 26, 10 19310 204, doi:10.1175/JCLI-D-13-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, doi:10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, and H. Rashid, 2013: Seasonal predictability of the southern annular mode due to its association with ENSO. J. Climate, 26, 80378054, doi:10.1175/JCLI-D-13-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, and R. Ren, 2004: Relationship between the subtropical anticyclone and diabatic heating. J. Climate, 17, 682698, doi:10.1175/1520-0442(2004)017<0682:RBTSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., C. W. Böning, N. S. Keenlyside, and S.-P. Xie, 2010: On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic anticyclone. J. Geophys. Res., 115, C09015, doi:10.1029/2009JC005964.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., N. J. Burls, C. J. C. Reason, and M. J. McPhaden, 2014: Variability in the South Atlantic anticyclone and the Atlantic Niño mode. J. Climate, 27, 81358150, doi:10.1175/JCLI-D-14-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyasaka, T., and H. Nakamura, 2005: Structure and formation mechanism of the Northern Hemisphere summertime subtropical highs. J. Climate, 18, 50465065, doi:10.1175/JCLI3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyasaka, T., and H. Nakamura, 2010: Structure and mechanisms of the Southern Hemisphere summertime subtropical anticyclones. J. Climate, 23, 21152130, doi:10.1175/2009JCLI3008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., T. Tozuka, and T. Yamagata, 2011: On the growth and decay of the subtropical dipole mode in the South Atlantic. J. Climate, 24, 55385554, doi:10.1175/2011JCLI4010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohishi, S., S. Sugimoto, and K. Hanawa, 2015: Zonal movement of the Mascarene high in austral summer. Climate Dyn., 45, 17391745, doi:10.1007/s00382-014-2427-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., C. R. Mechoso, and A. W. Robertson, 2008: What determines the position and intensity of the South Atlantic anticyclone in austral winter?—An AGCM study. J. Climate, 21, 214229, doi:10.1175/2007JCLI1802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., S. K. Behera, Y. Masumoto, B. Taguchi, N. Komori, and T. Yamagata, 2010: On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophys. Res. Lett., 37, L20604, doi:10.1029/2010GL044461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. Miller, 2003: Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16, 19481966, doi:10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486, doi:10.1175/JCLI3843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterl, A., and W. Hazeleger, 2003: Coupled variability and air–sea interaction in the South Atlantic Ocean. Climate Dyn., 21, 559571, doi:10.1007/s00382-003-0348-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trzaska, S., A. W. Robertson, J. D. Farrara, and C. R. Mechoso, 2007: South Atlantic variability arising from air–sea coupling: Local mechanisms and tropical–subtropical interactions. J. Climate, 20, 33453365, doi:10.1175/JCLI4114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1997: Atmosphere–ocean coupled variability in the South Atlantic. J. Climate, 10, 29042920, doi:10.1175/1520-0442(1997)010<2904:AOCVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., Y. Richard, M. Rouault, and N. Fauchereau, 2009: Moisture transport between the South Atlantic Ocean and southern Africa: Relationships with summer rainfall and associated dynamics. Climate Dyn., 32, 113123, doi:10.1007/s00382-008-0377-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2016: Understanding long-term (1982–2013) multi-decadal change in the equatorial and subtropical South Atlantic climate. Climate Dyn., 46, 20872113, doi:10.1007/s00382-015-2691-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2006: An overlooked feature of tropical climate: Inter-Pacific-Atlantic variability. Geophys. Res. Lett., 33, L12702, doi:10.1029/2006GL026324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, doi:10.1002/joc.2336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, doi:10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 79
PDF Downloads 74 74 74

The South Atlantic Subtropical High: Climatology and Interannual Variability

View More View Less
  • 1 Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas
Restricted access

Abstract

ERA-Interim and JRA-55 reanalysis products are analyzed to document the annual cycle of the South Atlantic subtropical high (SASH) and examine how its interannual variability relates to regional and large-scale climate variability. The annual cycle of the SASH is found to have two peaks in both intensity and size. The SASH is strongest and largest during the solstitial months when its center is either closest to the equator and on the western side of the South Atlantic basin during austral winter or farthest poleward and in the center of the basin in late austral summer. Although interannual variations in the SASH’s position are larger in the zonal direction, the intensity of the high decreases when it is positioned to the north. This relationship is statistically significant in every month. Seasonal composites and EOF analysis indicate that meridional changes in the position of the SASH dominate interannual variations in austral summer. In particular, the anticyclone tends to be displaced poleward in La Niña years when the southern annular mode (SAM) is in its positive phase and vice versa. Wave activity flux vectors suggest that ENSO-related convective anomalies located in the central-eastern tropical Pacific act as a remote forcing for the meridional variability of the summertime SASH. In southern winter, multiple processes operate in concert to induce interannual variability, and none of them appears to dominate like ENSO does during the summer.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Xiaoming Sun, xiaoming.sun@jsg.utexas.edu

Abstract

ERA-Interim and JRA-55 reanalysis products are analyzed to document the annual cycle of the South Atlantic subtropical high (SASH) and examine how its interannual variability relates to regional and large-scale climate variability. The annual cycle of the SASH is found to have two peaks in both intensity and size. The SASH is strongest and largest during the solstitial months when its center is either closest to the equator and on the western side of the South Atlantic basin during austral winter or farthest poleward and in the center of the basin in late austral summer. Although interannual variations in the SASH’s position are larger in the zonal direction, the intensity of the high decreases when it is positioned to the north. This relationship is statistically significant in every month. Seasonal composites and EOF analysis indicate that meridional changes in the position of the SASH dominate interannual variations in austral summer. In particular, the anticyclone tends to be displaced poleward in La Niña years when the southern annular mode (SAM) is in its positive phase and vice versa. Wave activity flux vectors suggest that ENSO-related convective anomalies located in the central-eastern tropical Pacific act as a remote forcing for the meridional variability of the summertime SASH. In southern winter, multiple processes operate in concert to induce interannual variability, and none of them appears to dominate like ENSO does during the summer.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Xiaoming Sun, xiaoming.sun@jsg.utexas.edu
Save