ENSO Influence on TRMM Tropical Oceanic Precipitation Characteristics and Rain Rates

David S. Henderson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David S. Henderson in
Current site
Google Scholar
PubMed
Close
,
Christian D. Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
, and
Wesley Berg Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Wesley Berg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Discrepancies between Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) oceanic rainfall retrievals are prevalent between El Niño and La Niña conditions with TMI exhibiting systematic shifts in precipitation. To investigate the causality of this relationship, this paper focuses on the evolution of precipitation organization between El Niño and La Niña and their impacts on TRMM precipitation. The results indicate that discrepancies are related to shifts from isolated deep convection during La Niña toward organized precipitation during El Niño with the largest variability occurring in the Pacific basins. During El Niño, organized systems are more frequent, have increased areal coverage of stratiform rainfall, and penetrate deeper into the troposphere compared to La Niña. The increased stratiform raining fraction leads to larger increases in TMI rain rates than PR rain rate retrievals. Reanalysis and water vapor data from the Atmospheric Infrared Sounder (AIRS) indicate that organized systems are aided by midtropospheric moisture increases accompanied by increased convective frequency. During La Niña, tropical rainfall is dominated by isolated deep convection due to drier midtropospheric conditions and strong mid- and upper-level zonal wind shear. To examine tropical rainfall–sea surface temperature relations, regime-based bias corrections derived using ground validation (GV) measurements are applied to the TRMM rain estimates. The robust connection with GV-derived biases and oceanic precipitation leads to a reduction in TMI-PR regional differences and tropics-wide precipitation anomalies. The improved agreement between PR and TMI estimates yields positive responses of precipitation to tropical SSTs of 10% °C−1 and 17% °C−1, respectively, consistent with 15% °C−1 from the Global Precipitation Climatology Project (GPCP).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Henderson, henderson@atmos.colostate.edu

Abstract

Discrepancies between Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) oceanic rainfall retrievals are prevalent between El Niño and La Niña conditions with TMI exhibiting systematic shifts in precipitation. To investigate the causality of this relationship, this paper focuses on the evolution of precipitation organization between El Niño and La Niña and their impacts on TRMM precipitation. The results indicate that discrepancies are related to shifts from isolated deep convection during La Niña toward organized precipitation during El Niño with the largest variability occurring in the Pacific basins. During El Niño, organized systems are more frequent, have increased areal coverage of stratiform rainfall, and penetrate deeper into the troposphere compared to La Niña. The increased stratiform raining fraction leads to larger increases in TMI rain rates than PR rain rate retrievals. Reanalysis and water vapor data from the Atmospheric Infrared Sounder (AIRS) indicate that organized systems are aided by midtropospheric moisture increases accompanied by increased convective frequency. During La Niña, tropical rainfall is dominated by isolated deep convection due to drier midtropospheric conditions and strong mid- and upper-level zonal wind shear. To examine tropical rainfall–sea surface temperature relations, regime-based bias corrections derived using ground validation (GV) measurements are applied to the TRMM rain estimates. The robust connection with GV-derived biases and oceanic precipitation leads to a reduction in TMI-PR regional differences and tropics-wide precipitation anomalies. The improved agreement between PR and TMI estimates yields positive responses of precipitation to tropical SSTs of 10% °C−1 and 17% °C−1, respectively, consistent with 15% °C−1 from the Global Precipitation Climatology Project (GPCP).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David Henderson, henderson@atmos.colostate.edu
Save
  • Alexander, M. A., N.-C. Lau, and J. D. Scott, 2004: Broadening the atmospheric bridge paradigm: ENSO teleconnections to the tropical west Pacific–Indian Oceans over the seasonal cycle and to the North Pacific in summer. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 85–103, https://doi.org/10.1029/147GM05.

    • Crossref
    • Export Citation
  • Awaka, J., T. Iguchi, and K. Okamoto, 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. Proc. Eighth URSI Commission Open Symp., Aveiro, Portugal, Union Radio-Scientifique Internationale, 22–25.

  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., Z. R. Hansen, and Z. Handlos, 2017: Estimating vertical motion profile top-heaviness: Reanalysis compared to satellite-based observations, stratiform rain fraction. J. Atmos. Sci., 74, 855864, https://doi.org/10.1175/JAS-D-16-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H., and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden–Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res., 118, 69967023, https://doi.org/10.1002/jgrd.50375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., C. Kummerow, and C. Morales, 2002: Differences between east and west Pacific rainfall systems. J. Climate, 15, 36593672, https://doi.org/10.1175/1520-0442(2002)015<3659:DBEAWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, https://doi.org/10.1175/JAM2331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, N., and Coauthors, 2015: The influence of surface and precipitation characteristics on TRMM TMI rainfall retrieval uncertainty. J. Hydrometeor., 16, 15961614, https://doi.org/10.1175/JHM-D-14-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., and C. Liu, 2016: Warm organized rain system over the tropical Pacific. J. Climate, 29, 34033422, https://doi.org/10.1175/JCLI-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Global seasonal precipitation anomalies robustly associated with El Niño and La Niña events—An OLR perspective. J. Climate, 28, 61336159, https://doi.org/10.1175/JCLI-D-14-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and C. D. Kummerow, 2013: A multisensor observational depiction of the transition from light to heavy rainfall on subdaily time scales. J. Atmos. Sci., 70, 23092324, https://doi.org/10.1175/JAS-D-12-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. D. Kummerow, T. S. L’Ecuyer, Y. N. Takayabu, and S. Shige, 2010: Observed self-similarity of precipitation regimes over the tropical oceans. J. Climate, 23, 26862698, https://doi.org/10.1175/2010JCLI3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, https://doi.org/10.2151/jmsj.2013-302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. Huffman, and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J. Climate, 20, 40334046, https://doi.org/10.1175/JCLI4227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handlos, Z. J., and L. E. Back, 2014: Estimating vertical motion profile shape within tropical weather states over the oceans. J. Climate, 27, 76677686, https://doi.org/10.1175/JCLI-D-13-00602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., C. D. Kummerow, D. A. Marks, and W. Berg, 2017a: A regime-based evaluation of TRMM oceanic precipitation biases. J. Atmos. Oceanic Technol., 34, 26132635, https://doi.org/10.1175/JTECH-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., C. D. Kummerow, and D. A. Marks, 2017b: Sensitivity of rain-rate estimates related to convective organization: Observations from the Kwajalein, RMI, radar. J. Appl. Meteor. Climatol., 56, 10991119, https://doi.org/10.1175/JAMC-D-16-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W. and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 5867, https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement (GPM) Mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Houze, R. A., Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, https://doi.org/10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission (TRMM) satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, https://doi.org/10.2151/jmsj.87A.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, https://doi.org/10.1029/2012GL052006.

  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, Q. Cao, M. Schwaller, and W. Petersen, 2014: Research framework to bridge from the Global Precipitation Measurement Mission core satellite to the constellation sensors using ground-radar-based national mosaic QPE. Remote Sensing of the Terrestrial Water Cycle, Geophys. Monogr., Vol. 206, Amer. Geophys. Union, 61–79, https://doi.org/10.1002/9781118872086.

    • Crossref
    • Export Citation
  • Kishore, P., and Coauthors, 2011: Global (50°S–50°N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets. J. Atmos. Sol.-Terr. Phys., 73, 18491860, https://doi.org/10.1016/j.jastp.2011.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., D. L. Randel, M. Kulie, N. Wang, R. Ferraro, S. J. Munchak, and V. Petkovic, 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K., and H. T. Wu, 2011: Climatology and changes in tropical oceanic rainfall characteristics inferred from Tropical Rainfall Measuring Mission (TRMM) data (1998–2009). J. Geophys. Res., 116, D17111, https://doi.org/10.1029/2011JD015827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and C. Schumacher, 2010: Thick anvils as viewed by the TRMM Precipitation Radar. J. Climate, 24, 17191735, https://doi.org/10.1175/2010JCLI3793.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2013: Regional variation of morphology of the organized convection in the tropics and subtropics. J. Geophys. Res., 118, 453466, doi:10.1029/2012JD018409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2014: Differences between the surface precipitation estimates from the TRMM precipitation radar and passive microwave radiometer version 7 products. J. Hydrometeor., 15, 21572175, https://doi.org/10.1175/JHM-D-14-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from 9 years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, https://doi.org/10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., R. P. Allan, and G. J. Huffman, 2013: Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophys. Res. Lett., 39, L13803, https://doi.org/10.1029/2012GL052093.

    • Search Google Scholar
    • Export Citation
  • Marks, D. A., D. B. Wolff, D. S. Silberstein, A. Tokay, J. L. Pippitt, and J. Wang, 2009: Availability of high-quality TRMM ground validation data from Kwajalein, RMI: A practical application of the relative calibration adjustment technique. J. Atmos. Oceanic Technol., 26, 413429, https://doi.org/10.1175/2008JTECHA1174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2013: A satellite study of tropical moist convection and environmental variability: A moisture and thermal budget analysis. J. Atmos. Sci., 70, 24432466, https://doi.org/10.1175/JAS-D-12-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2005: Variability in the characteristics of tropical precipitation systems. Part I: Spatial structure. J. Climate, 18, 823840, https://doi.org/10.1175/JCLI-3304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20532070, https://doi.org/10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., C. D. Kummerow, and G. Elsaesser, 2012: Relationships between the raindrop size distribution and properties of the environment and clouds inferred from TRMM. J. Climate, 25, 29632978, https://doi.org/10.1175/JCLI-D-11-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., S. K. Behera, Y. Masumoto K. Takahashi, and T. Yamagata, 2012: Anomalous climatic conditions associated with the El Niño Modoki during boreal winter of 2009. Climate Dyn., 39, 227238, https://doi.org/10.1007/s00382-011-1108-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164, https://doi.org/10.1175/1520-0450(2001)040<2151:CORDFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255, https://doi.org/10.1256/qj.05.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, E.-K., S. Hristova-Veleva, G. Liu, M.-L. Ou, and G.-H. Ryu, 2015: Long-term comparison of collocated instantaneous rain retrievals from the TRMM Microwave Imager and Precipitation Radar over the ocean. J. Appl. Meteor. Climatol., 54, 867879, https://doi.org/10.1175/JAMC-D-14-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113, https://doi.org/10.1175/1520-0450(2004)043<1095:SROLHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013: Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol., 52, 242254, https://doi.org/10.1175/JAMC-D-12-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silberstein, D. S., D. B. Wolff, D. A. Marks, D. Atlas, and J. L. Pippitt, 2008: Ground clutter as a monitor of radar stability at Kwajalein, RMI. J. Atmos. Oceanic Technol., 25, 20372045, https://doi.org/10.1175/2008JTECHA1063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422444, https://doi.org/10.1175/1520-0493(2004)132<0422:LMADCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The sensitivity of the tropical hydrological cycle to ENSO. J. Climate, 13, 538549, https://doi.org/10.1175/1520-0442(2000)013<0538:TSOTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Su, H., and J. H. Jiang, 2013: Tropical clouds and circulation changes during the 2006/07 and 2009/10 El Niños. J. Climate, 26, 399413, https://doi.org/10.1175/JCLI-D-12-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40, 957982, https://doi.org/10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, and Y. L. Yung, 2010: Vertical moist thermodynamic structure of the Madden–Julian oscillation in atmospheric infrared sounder retrievals: An update and a comparison to ECMWF interim reanalysis. Mon. Wea. Rev., 138, 45764582, https://doi.org/10.1175/2010MWR3486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and A. Wittenberg, 2010: El Niño and our future climate: Where do we stand? Wiley Interdiscip. Rev.: Climate Change, 1, 260270, https://doi.org/10.1002/wcc.33.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., R. F. Adler, and G. Gu, 2008: Tropical rainfall–surface temperature relations using Tropical Rainfall Measuring Mission precipitation data. J. Geophys. Res., 113, D18115, https://doi.org/10.1029/2007JD009540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. T. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, L20703, https://doi.org/10.1029/2012GL053305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380, https://doi.org/10.1175/JTECH1700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., E. J. Zipser, and C. Liu, 2014: TRMM-observed shallow versus deep convection in the eastern Pacific related to large-scale circulations in reanalysis datasets. J. Climate, 27, 55755592, https://doi.org/10.1175/JCLI-D-13-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, https://doi.org/10.1002/qj.49712454504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E., D. Cecil, C. Liu, S. W. Nesbitt, and S. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 351 78 10
PDF Downloads 352 64 11