A Coupled Ice Sheet–Sea Level Model Incorporating 3D Earth Structure: Variations in Antarctica during the Last Deglacial Retreat

Natalya Gomez Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Natalya Gomez in
Current site
Google Scholar
PubMed
Close
,
Konstantin Latychev Physics Department, University of Toronto, Toronto, Canada

Search for other papers by Konstantin Latychev in
Current site
Google Scholar
PubMed
Close
, and
David Pollard Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by David Pollard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A gravitationally self-consistent, global sea level model with 3D viscoelastic Earth structure is interactively coupled to a 3D dynamic ice sheet model, and the coupled model is applied to simulate the evolution of ice cover, sea level changes, and solid Earth deformation over the last deglaciation, from 40 ka to the modern. The results show that incorporating lateral variations in Earth’s structure across Antarctica yields local differences in the modeled ice history and introduces significant uncertainty in estimates of both relative sea level change and modern crustal motions through the last deglaciation. An analysis indicates that the contribution of glacial isostatic adjustment to modern records of sea level change and solid Earth deformation in regions of Antarctica underlain by low mantle viscosity may be more sensitive to ice loading during the late Holocene than across the last deglaciation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0352.s1.

Current affiliation: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Natalya Gomez, natalya.gomez@mcgill.ca

Abstract

A gravitationally self-consistent, global sea level model with 3D viscoelastic Earth structure is interactively coupled to a 3D dynamic ice sheet model, and the coupled model is applied to simulate the evolution of ice cover, sea level changes, and solid Earth deformation over the last deglaciation, from 40 ka to the modern. The results show that incorporating lateral variations in Earth’s structure across Antarctica yields local differences in the modeled ice history and introduces significant uncertainty in estimates of both relative sea level change and modern crustal motions through the last deglaciation. An analysis indicates that the contribution of glacial isostatic adjustment to modern records of sea level change and solid Earth deformation in regions of Antarctica underlain by low mantle viscosity may be more sensitive to ice loading during the late Holocene than across the last deglaciation.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0352.s1.

Current affiliation: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Natalya Gomez, natalya.gomez@mcgill.ca

Supplementary Materials

    • Supplemental Materials (PDF 9.04 MB)
Save
  • A, G., J. Wahr, and S. Zhong, 2013: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int., 192, 557572, https://doi.org/10.1093/gji/ggs030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alley, R. B., S. Anandakrishnan, K. Christianson, H. J. Horgan, A. Muto, B. R. Parizek, D. Pollard, and R. T. Walker, 2015: Oceanic forcing of ice-sheet retreat: West Antarctica and more. Annu. Rev. Earth Planet. Sci., 43, 207231, https://doi.org/10.1146/annurev-earth-060614-105344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, M., and Coauthors, 2015a: Temperature, lithosphere–asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities. J. Geophys. Res. Solid Earth, 120, 87208742, https://doi.org/10.1002/2015JB011917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, M., and Coauthors, 2015b: S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. J. Geophys. Res. Solid Earth, 120, 359383, https://doi.org/10.1002/2014JB011332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austermann, J., J. X. Mitrovica, K. Latychev, and G. A. Milne, 2013: Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate. Nat. Geosci., 6, 553557, https://doi.org/10.1038/ngeo1859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, S. L., R. C. A. Hindmarsh, P. L. Whitehouse, M. J. Bentley, and M. A. King, 2015: Low post-glacial rebound rates in the Weddell Sea due to late Holocene ice-sheet readvance. Earth Planet. Sci. Lett., 413, 7989, https://doi.org/10.1016/j.epsl.2014.12.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briggs, R. D., D. Pollard, and L. Tarasov, 2013: A glacial systems model configured for large ensemble analysis of Antarctic deglaciation. Cryosphere, 7, 19491970, https://doi.org/10.5194/tc-7-1949-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cande, S. C., J. M. Stock, R. D. Müller, and T. Ishihara, 2000: Cenozoic motion between East and West Antarctica. Nature, 404, 145150, https://doi.org/10.1038/35004501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaput, J., and Coauthors, 2014: The crustal thickness of West Antarctica. J. Geophys. Res. Solid Earth, 119, 378395, https://doi.org/10.1002/2013JB010642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrad, C. P., and C. Lithgow-Bertelloni, 2006: Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett., 33, L05312, https://doi.org/10.1029/2005GL025621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalziel, I. W. D., and L. A. Lawver, 2001: The lithospheric setting of the West Antarctic Ice Sheet. The West Antarctic Ice Sheet: Behavior and Environment, R. B. Alley and R. A. Bindschadle, Antarctic Research Series, Vol. 77, Amer. Geophys. Union, 29–44, https://doi.org/10.1029/AR077p0029.

    • Crossref
    • Export Citation
  • Danesi, S., and A. Morelli, 2001: Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophys. Res. Lett., 28, 43954398, https://doi.org/10.1029/2001GL013431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, B., P. Stocchi, and R. S. W. van de Wal, 2014: A fully coupled 3-D ice-sheet–sea-level model: Algorithm and applications. Geosci. Model Dev., 7, 21412156, https://doi.org/10.5194/gmd-7-2141-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, https://doi.org/10.1038/nature17145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziewonski, A. M., and D. L. Anderson, 1981: Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297356, https://doi.org/10.1016/0031-9201(81)90046-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fastook, J. L., and M. Prentice, 1994: A finite-element model of Antarctica: Sensitivity test for meteorological mass–balance relationship. J. Glaciol., 40, 167175, https://doi.org/10.1017/S0022143000003944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fretwell, P., and Coauthors, 2013: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 375393, https://doi.org/10.5194/tc-7-375-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, S. L., H. C. P. Lau, J. X. Mitrovica, and K. Latychev, 2016: The timing of the Black Sea flood event: Insights from modeling of glacial isostatic adjustment. Earth Planet. Sci. Lett., 452, 178184, https://doi.org/10.1016/j.epsl.2016.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, and E. G. W. Gasson, 2015: The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 421425, https://doi.org/10.1038/nature15706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez, N., J. X. Mitrovica, P. Huybers, and P. U. Clark, 2010: Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat. Geosci., 3, 850853, https://doi.org/10.1038/ngeo1012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez, N., D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark, 2012: Evolution of a coupled marine ice sheet–sea level model. J. Geophys. Res., 117, F01013, https://doi.org/10.1029/2011JF002128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez, N., D. Pollard, and J. X. Mitrovica, 2013: A 3-D coupled ice sheet–sea level model applied to Antarctica over the last 40 ky. Earth Planet. Sci. Lett., 384, 8899, https://doi.org/10.1016/j.epsl.2013.09.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez, N., D. Pollard, and D. Holland, 2015: Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss. Nat. Commun., 6, 8798, https://doi.org/10.1038/ncomms9798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, S. E., and Coauthors, 2014: Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: Evidence for heterogeneous structure beneath West Antarctica. Earth Planet. Sci. Lett., 408, 6678, https://doi.org/10.1016/j.epsl.2014.09.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harley, S. L., 2003: Archaean-Cambrian crustal development of East Antarctica: Metamorphic characteristics and tectonic implications. Geol. Soc. of London Special Publ., 206, 203230, https://doi.org/10.1144/GSL.SP.2003.206.01.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, C., J. X. Mitrovica, N. Gomez, J. R. Creveling, J. Austermann, and R. E. Kopp, 2014: The sea-level fingerprints of ice-sheet collapse during interglacial periods. Quat. Sci. Rev., 87, 6069, https://doi.org/10.1016/j.quascirev.2013.12.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, C., H. C. P. Lau, N. Gomez, J. Austermann, E. Powell, J. X. Mitrovica, K. Latychev, and D. A. Wiens, 2017: Sea level fingerprints in a region of complex Earth structure: The case of WAIS. J. Climate, 30, 18811892, https://doi.org/10.1175/JCLI-D-16-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heeszel, D. S., D. A. Wiens, A. A. Nyblade, S. E. Hansen, M. Kanao, M. An, and Y. Zhao, 2013: Rayleigh wave constraints on the structure and tectonic history of the Gamburtsev Subglacial Mountains, East Antarctica. J. Geophys. Res. Solid Earth, 118, 21382153, https://doi.org/10.1002/jgrb.50171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heeszel, D. S., and Coauthors, 2016: Upper mantle structure of the central and West Antarctica from array analysis of Rayleigh wave phase velocities. J. Geophys. Res. Solid Earth, 121, 17581775, https://doi.org/10.1002/2015JB012616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjort, C., Ó. Ingólfsson, P. Möller, and J. M. Lirio, 1997: Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. J. Quat. Sci., 12, 259273, https://doi.org/10.1002/(SICI)1099-1417(199707/08)12:4<259::AID-JQS307>3.0.CO;2-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IAG/SCAR-SERCE, 2017: Report on IAG/SCAR-SERCE Workshop on Glacial Isostatic Adjustment and Elastic Deformation Reykjavik, 5–7th September 2017. Scientific Committee on Antarctic Research Rep., https://www.scar.org/scar-news/serce-news/report-on-iag-workshop/.

  • Ivins, E. R., T. S. James, J. Wahr, E. J. O. Schrama, F. W. Landerer, and K. M. Simon, 2013: Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth, 118, 31263141, https://doi.org/10.1002/jgrb.50208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, T. A., F. Ferraccioli, D. G. Vaughan, J. W. Holt, H. Corr, D. D. Blankenship, and T. M. Diehl, 2010: Aerogravity evidence for major crustal thinning under the Pine Island Glacier region (West Antarctica). Geol. Soc. Amer. Bull., 122, 714726, https://doi.org/10.1130/B26417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joughin, I., B. E. Smith, and B. Medley, 2014: Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344, 735738, https://doi.org/10.1126/science.1249055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, G., P. Wu, and E. R. Ivins, 2005: Lateral viscosity variations beneath Antarctica and their implications on regional rebound motions and seismotectonics. J. Geodyn., 39, 165181, https://doi.org/10.1016/j.jog.2004.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, R. A., J. X. Mitrovica, and G. A. Milne, 2005: On post-glacial sea level—II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int., 161, 679706, https://doi.org/10.1111/j.1365-246X.2005.02553.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, H., M. Thoma, I. Sasgen, V. Klemann, K. Grosfeld, D. Barbi, and Z. Martinec, 2014: The deformational response of a viscoelastic solid Earth model coupled to a thermomechanical ice sheet model. Surv. Geophys., 35, 14411458, https://doi.org/10.1007/s10712-013-9257-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, H., I. Sasgen, D. Pollard, and V. Klemann, 2015: Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Planet. Sci. Lett., 432, 254264, https://doi.org/10.1016/j.epsl.2015.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., F. J. Simons, J. X. Mitrovica, A. C. Maloof, and M. Oppenheimer, 2013: A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int., 193, 711716, https://doi.org/10.1093/gji/ggt029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambeck, K., C. Smither, and P. Johnston, 1998: Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int., 134, 102144, https://doi.org/10.1046/j.1365-246x.1998.00541.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambeck, K., H. Rouby, A. Purcell, Y. Sun, and M. Sambridge, 2014: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA, 111, 15 29615 303, https://doi.org/10.1073/pnas.1411762111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latychev, K., J. X. Mitrovica, J. Tromp, M. E. Tamisiea, D. Komatitsch, and C. C. Christara, 2005: Glacial isostatic adjustment on 3-D Earth models: A finite-volume formulation. Geophys. J. Int., 161, 421444, https://doi.org/10.1111/j.1365-246X.2005.02536.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Meur, E., and P. Huybrechts, 2001: A model computation of the temporal changes of surface gravity and geoidal signal induced by the evolving Greenland ice sheet. Geophys. J. Int., 145, 835849, https://doi.org/10.1046/j.1365-246x.2001.01442.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercer, J. H., 1968: Antarctic ice and Sangamon sea level. Int. Assoc. Sci. Hydrol. Publ., 79, 217225.

  • Mercer, J. H., 1978: West Antarctic Ice Sheet and CO2 greenhouse effect: A threat of disaster. Nature, 271, 321325, https://doi.org/10.1038/271321a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., and A. M. Forte, 2004: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 225, 177189, https://doi.org/10.1016/j.epsl.2004.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morelli, A., and S. Danesi, 2004: Seismological imaging of the Antarctic continental lithosphere: A review. Global Planet. Change, 42, 155165, https://doi.org/10.1016/j.gloplacha.2003.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 1974: The impulse response of a Maxwell Earth. Rev. Geophys., 12, 649669, https://doi.org/10.1029/RG012i004p00649.

  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, https://doi.org/10.1146/annurev.earth.32.082503.144359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., D. F. Argus, and R. Drummond, 2015: Space geodesy constrains Ice Age terminal deglaciation: The global ICE‐6G_C (VM5a) model. J. Geophys. Res. Solid Earth, 120, 450487, https://doi.org/10.1002/2014JB011176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., and R. M. DeConto, 2009: Modelling West Antarctic Ice Sheet growth and collapse through the past five million years. Nature, 458, 329332, https://doi.org/10.1038/nature07809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., and R. M. DeConto, 2012: Description of a hybrid ice sheet–shelf model, and application to Antarctica. Geosci. Model Dev., 5, 12731295, https://doi.org/10.5194/gmd-5-1273-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., R. M. DeConto, and R. B. Alley, 2015: Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett., 412, 112121, https://doi.org/10.1016/j.epsl.2014.12.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., W. Chang, M. Haran, P. Applegate, and R. DeConto, 2016: Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: Comparison of simple and advanced statistical techniques. Geosci. Model Dev., 9, 16971723, https://doi.org/10.5194/gmd-9-1697-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., N. Gomez, and R. DeConto, 2017: Variations of the Antarctic Ice Sheet in a coupled ice sheet–Earth–sea level model: Sensitivity to viscoelastic Earth properties. J. Geophys. Res. Earth Surf., 122, 21242138, https://doi.org/10.1002/2017JF004371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramirez, C., and Coauthors, 2016: Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from S-wave receiver functions and implications for heat flow. Geophys. J. Int., 204, 16361648, https://doi.org/10.1093/gji/ggv542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl, 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett., 41, 35023509, https://doi.org/10.1002/2014GL060140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritsema, J., A. Deuss, H. van Heijst, and J. Woodhouse, 2011: S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int., 184, 12231236, https://doi.org/10.1111/j.1365-246X.2010.04884.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritzwoller, M. H., N. M. Shapiro, A. L. Levshin, and G. M. Leahy, 2001: Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J. Geophys. Res., 106, 30 64530 670, https://doi.org/10.1029/2001JB000179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, S. J., and Coauthors, 2011: Geological constraints on glacio-isostatic adjustment models of relative sea-level change during deglaciation of Prince Gustav Channel, Antarctic Peninsula. Quat. Sci. Rev., 30, 36033617, https://doi.org/10.1016/j.quascirev.2011.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, N. M., and M. H. Ritzwoller, 2004: Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica. Earth Planet. Sci. Lett., 223, 213224, https://doi.org/10.1016/j.epsl.2004.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegert, M., N. Ross, H. Corr, J. Kingslake, and R. Hindmarsh, 2013: Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. Quat. Sci. Rev., 78, 98107, https://doi.org/10.1016/j.quascirev.2013.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. G., H. A. Curran, M. A. Wilson, and B. White, 2011: Sea-level oscillations during the last interglacial highstand recorded by Bahamas corals. Nat. Geosci., 4, 684687, https://doi.org/10.1038/ngeo1253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wal, W., P. L. Whitehouse, and E. J. O. Schrama, 2015: Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett., 414, 134143, https://doi.org/10.1016/j.epsl.2015.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weertman, J., 1974: Stability of the junction of an ice sheet and an ice shelf. J. Glaciol., 13, 311, https://doi.org/10.1017/S0022143000023327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehouse, P. L., M. J. Bentley, G. A. Milne, M. A. King, and I. D. Thomas, 2012: A new glacial isostatic model for Antarctica: Calibrated and tested using observations of relative sea-level change and present-day uplifts. Geophys. J. Int., 190, 14641482, https://doi.org/10.1111/j.1365-246X.2012.05557.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., and W. van der Wal, 2003: Postglacial sealevels on a spherical, self-gravitating viscoelastic earth: Effects of lateral viscosity variations in the upper mantle on the inference of viscosity contrasts in the lower mantle. Earth Planet. Sci. Lett., 211, 5768, https://doi.org/10.1016/S0012-821X(03)00199-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1319 486 40
PDF Downloads 970 313 26