Downward Wave Coupling between the Stratosphere and Troposphere under Future Anthropogenic Climate Change

Sandro W. Lubis GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Sandro W. Lubis in
Current site
Google Scholar
PubMed
Close
,
Katja Matthes GEOMAR Helmholtz Centre for Ocean Research Kiel, and Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Search for other papers by Katja Matthes in
Current site
Google Scholar
PubMed
Close
,
Nili Harnik Department of Geophysics, Tel Aviv University, Tel Aviv, Israel

Search for other papers by Nili Harnik in
Current site
Google Scholar
PubMed
Close
,
Nour-Eddine Omrani Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Nour-Eddine Omrani in
Current site
Google Scholar
PubMed
Close
, and
Sebastian Wahl GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Sebastian Wahl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Downward wave coupling (DWC) is an important process that characterizes the dynamical coupling between the stratosphere and troposphere via planetary wave reflection. A recent modeling study has indicated that natural forcing factors, including sea surface temperature (SST) variability and the quasi-biennial oscillation (QBO), influence DWC and the associated surface impact in the Northern Hemisphere (NH). In light of this, the authors further investigate how DWC in the NH is affected by anthropogenic forcings, using a fully coupled chemistry–climate model CESM1(WACCM). The results indicate that the occurrence of DWC is significantly suppressed in the future, starting later in the seasonal cycle, with more events concentrated in late winter (February and March). The future decrease in DWC events is associated with enhanced wave absorption in the stratosphere due to increased greenhouse gases (GHGs), which is manifest as more absorbing types of stratospheric sudden warmings (SSWs) in early winter. This early winter condition leads to a delay in the development of the upper-stratospheric reflecting surface, resulting in a shift in the seasonal cycle of DWC toward late winter in the future. The tropospheric responses to DWC events in the future exhibit different spatial patterns, compared to those of the past. In the North Atlantic sector, DWC-induced circulation changes are characterized by a poleward shift and an eastward extension of the tropospheric jet, while in the North Pacific sector, the circulation changes are characterized by a weakening of the tropospheric jet. These responses are consistent with a change in the pattern of DWC-induced synoptic-scale eddy–mean flow interaction in the future.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0382.s1.

Current affiliation: Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sandro W. Lubis, slubis@uchicago.edu

Abstract

Downward wave coupling (DWC) is an important process that characterizes the dynamical coupling between the stratosphere and troposphere via planetary wave reflection. A recent modeling study has indicated that natural forcing factors, including sea surface temperature (SST) variability and the quasi-biennial oscillation (QBO), influence DWC and the associated surface impact in the Northern Hemisphere (NH). In light of this, the authors further investigate how DWC in the NH is affected by anthropogenic forcings, using a fully coupled chemistry–climate model CESM1(WACCM). The results indicate that the occurrence of DWC is significantly suppressed in the future, starting later in the seasonal cycle, with more events concentrated in late winter (February and March). The future decrease in DWC events is associated with enhanced wave absorption in the stratosphere due to increased greenhouse gases (GHGs), which is manifest as more absorbing types of stratospheric sudden warmings (SSWs) in early winter. This early winter condition leads to a delay in the development of the upper-stratospheric reflecting surface, resulting in a shift in the seasonal cycle of DWC toward late winter in the future. The tropospheric responses to DWC events in the future exhibit different spatial patterns, compared to those of the past. In the North Atlantic sector, DWC-induced circulation changes are characterized by a poleward shift and an eastward extension of the tropospheric jet, while in the North Pacific sector, the circulation changes are characterized by a weakening of the tropospheric jet. These responses are consistent with a change in the pattern of DWC-induced synoptic-scale eddy–mean flow interaction in the future.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0382.s1.

Current affiliation: Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sandro W. Lubis, slubis@uchicago.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.41 MB)
Save
  • Ayarzagüena, B., U. Langematz, S. Meul, S. Oberländer, J. Abalichin, and A. Kubin, 2013: The role of climate change and ozone recovery for the future timing of major stratospheric warmings. Geophys. Res. Lett., 40, 24602465, https://doi.org/10.1002/grl.50477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, and J. Kettleborough, 2010: Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Quart. J. Roy. Meteor. Soc., 136, 11811190, https://doi.org/10.1002/qj.633.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., J. Austin, J. R. Knight, A. A. Scaife, and M. L. Gallani, 2000: The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J. Climate, 13, 21422159, https://doi.org/10.1175/1520-0442(2000)013<2142:TROTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., L. M. Polvani, J. Austin, and F. Li, 2008: The frequency and dynamics of stratospheric sudden warmings in the 21st century. J. Geophys. Res., 113, D16116, https://doi.org/10.1029/2007JD009571.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: North Atlantic storm-track sensitivity to projected sea surface temperature: Local versus remote influences. J. Climate, 29, 69736991, https://doi.org/10.1175/JCLI-D-15-0860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E. and T. A. Shaw, 2015: Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos., 120, 13741390, https://doi.org/10.1002/2014JD022116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J. and D. L. Hartmann, 2005: Changes in the strength of the Brewer–Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32, L15807, https://doi.org/10.1029/2005GL022924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, F., K. Matthes, C. Petrick, and W. Wang, 2014: The influence of natural and anthropogenic factors on major stratospheric sudden warmings. J. Geophys. Res. Atmos., 119, 81178136, https://doi.org/10.1002/2013JD021397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2009: Observed stratospheric downward reflection and its relation to upward pulses of wave activity. J. Geophys. Res., 114, D08120, https://doi.org/10.1029/2008JD010493.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., and R. S. Lindzen, 2001: The effect of reflecting surfaces on the vertical structure and variability of stratospheric planetary waves. J. Atmos. Sci., 58, 28722894, https://doi.org/10.1175/1520-0469(2001)058<2872:TEORSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnison, D. E., and Coauthors, 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., K. Yamazaki, M. Chiba, and K. Shibata, 1990: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett., 17, 12631266, https://doi.org/10.1029/GL017i009p01263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, P. Maury, M. Ueda, and C. Claud, 2016: Absorbing and reflecting sudden stratospheric warming events and their relationship with tropospheric circulation. J. Geophys. Res. Atmos., 121, 8094, https://doi.org/10.1002/2015JD023359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J., G. Rottman, J. Harder, and G. Kopp, 2005: SORCE contributions to new understanding of global change and solar variability. The Solar Radiation and Climate Experiment (SORCE), G. Rottman, T. Woods, and V. George, Eds., Springer, 27–53.

    • Crossref
    • Export Citation
  • Lu, H., L. J. Gray, I. P. White, and T. J. Bracegirdle, 2017a: Stratospheric response to the 11-yr solar cycle: Breaking planetary waves, internal reflection, and resonance. J. Climate, 30, 71697190, https://doi.org/10.1175/JCLI-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., A. A. Scaife, G. J. Marshall, J. Turner, and L. J. Gray, 2017b: Downward wave reflection as a mechanism for the stratosphere–troposphere response to the 11-yr solar cycle. J. Climate, 30, 23952414, https://doi.org/10.1175/JCLI-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., K. Matthes, N.-E. Omrani, N. Harnik, and S. Wahl, 2016a: Influence of the quasi-biennial oscillation and sea surface temperature variability on downward wave coupling in the Northern Hemisphere. J. Atmos. Sci., 73, 19431965, https://doi.org/10.1175/JAS-D-15-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., N.-E. Omrani, K. Matthes, and S. Wahl, 2016b: Impact of the Antarctic ozone hole on the vertical coupling of the stratosphere–mesosphere–lower thermosphere system. J. Atmos. Sci., 73, 25092528, https://doi.org/10.1175/JAS-D-15-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., V. Silverman, K. Matthes, N. Harnik, N.-E. Omrani, and S. Wahl, 2017: How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere? Atmos. Chem. Phys., 17, 24372458, https://doi.org/10.5194/acp-17-2437-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubis, S. W., C. S. Huang, N. Nakamura, N. Omrani, and M. Jucker, 2018: Role of finite-amplitude Rossby waves and nonconservative processes in downward migration of extratropical flow anomalies. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-17-0376.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzini, E., and Coauthors, 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J. Geophys. Res. Atmos., 119, 79797998, https://doi.org/10.1002/2013JD021403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz, 2006: Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res., 111, D06108, https://doi.org/10.1029/2005JD006283.

    • Search Google Scholar
    • Export Citation
  • Matthes, K., D. R. Marsh, R. R. Garcia, D. E. Kinnison, F. Sassi, and S. Walters, 2010: Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. J. Geophys. Res., 115, D18110, https://doi.org/10.1029/2009JD013020.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., S. M. Osprey, L. J. Gray, N. Butchart, S. C. Hardiman, A. J. Charlton-Perez, and P. Watson, 2012: The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. J. Atmos. Sci., 69, 26082618, https://doi.org/10.1175/JAS-D-12-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oberländer, S., U. Langematz, and S. Meul, 2013: Unraveling impact factors for future changes in the Brewer–Dobson circulation. J. Geophys. Res. Atmos., 118, 10 29610 312, https://doi.org/10.1002/jgrd.50775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, https://doi.org/10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schimanke, S., T. Spangehl, H. Huebener, and U. Cubasch, 2013: Variability and trends of major stratospheric warmings in simulations under constant and increasing GHG concentrations. Climate Dyn., 40, 17331747, https://doi.org/10.1007/s00382-012-1530-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Coauthors, 2013: Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model. J. Adv. Model. Earth Syst., 5, 98116, https://doi.org/10.1002/jame.20014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2013: The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere. J. Climate, 26, 17451763, https://doi.org/10.1175/JCLI-D-12-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, https://doi.org/10.1175/2010JCLI3804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, N. Harnik, P. A. Newman, and S. Pawson, 2011: The impact of stratospheric ozone changes on downward wave coupling in the Southern Hemisphere. J. Climate, 24, 42104229, https://doi.org/10.1175/2011JCLI4170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, and O. Weiner, 2014: Troposphere-stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res. Atmos., 119, 58645880, https://doi.org/10.1002/2013JD021191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, https://doi.org/10.1175/2010JAS3608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPARC CCMVal, 2010: SPARC report on the evaluation of chemistry climate models. SPARC Rep. 5, 7 pp.

  • Tomikawa, Y., 2010: Persistence of easterly wind during major stratospheric sudden warmings. J. Climate, 23, 52585267, https://doi.org/10.1175/2010JCLI3507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, https://doi.org/10.1175/2009JAS3194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci., 5, 313317, https://doi.org/10.1038/ngeo1438.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 126 13
PDF Downloads 374 96 15