Multidecadal Changes of Upper-Ocean Thermal Conditions in the Tropical Northwest Pacific Ocean versus South China Sea during 1960–2015

Tzu-Ling Chiang Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Search for other papers by Tzu-Ling Chiang in
Current site
Google Scholar
PubMed
Close
,
Yi-Chia Hsin Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Yi-Chia Hsin in
Current site
Google Scholar
PubMed
Close
, and
Chau-Ron Wu Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Search for other papers by Chau-Ron Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By analyzing the upper-ocean properties of observation-based hydrographic data and validated oceanic reanalysis products, this study presents multidecadal changes of oceanic surface and subsurface thermal conditions in the tropical northwest Pacific Ocean (TNWP) and South China Sea (SCS) during 1960–2015. The analysis reveals that a transition of a 30-yr trend took place in 1980s during the analyzed period for both the surface and subsurface environment. Generally, the warming trend of sea surface temperature (SST) in the TNWP has a similar multidecadal change to that in the SCS. However, a huge accumulating rate of upper-ocean heat content above the 26°C isotherm (UOHC26) showed up in the TNWP (about 3 times compared to that in the SCS) in the last 30 years. In the TNWP, the southward shift of the North Equatorial Current on the multidecadal time scale induces the vertical displacement of isotherms, leading to a strong subsurface warming around the top of the thermocline. Secondarily, the Pacific decadal oscillation (PDO)-related SST regulates the thermal structure in the mixed layer. The multidecadal UOHC26 in the SCS is mainly attributed to the PDO-related SST and further modulated by the isothermal variability caused by the change of basin-scale SCS circulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chau-Ron Wu, cwu@ntnu.edu.tw

Abstract

By analyzing the upper-ocean properties of observation-based hydrographic data and validated oceanic reanalysis products, this study presents multidecadal changes of oceanic surface and subsurface thermal conditions in the tropical northwest Pacific Ocean (TNWP) and South China Sea (SCS) during 1960–2015. The analysis reveals that a transition of a 30-yr trend took place in 1980s during the analyzed period for both the surface and subsurface environment. Generally, the warming trend of sea surface temperature (SST) in the TNWP has a similar multidecadal change to that in the SCS. However, a huge accumulating rate of upper-ocean heat content above the 26°C isotherm (UOHC26) showed up in the TNWP (about 3 times compared to that in the SCS) in the last 30 years. In the TNWP, the southward shift of the North Equatorial Current on the multidecadal time scale induces the vertical displacement of isotherms, leading to a strong subsurface warming around the top of the thermocline. Secondarily, the Pacific decadal oscillation (PDO)-related SST regulates the thermal structure in the mixed layer. The multidecadal UOHC26 in the SCS is mainly attributed to the PDO-related SST and further modulated by the isothermal variability caused by the change of basin-scale SCS circulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chau-Ron Wu, cwu@ntnu.edu.tw
Save
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., 2009: Rapid warming of large marine ecosystems. Prog. Oceanogr., 81, 207213, https://doi.org/10.1016/j.pocean.2009.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al. Eds., Cambridge University Press, 385–432.

  • Chan, J. C., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602, https://doi.org/10.1175/3240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-T. A., and M.-H. Huang, 1996: A mid-depth front separating the South China Sea water and the Philippine Sea water. J. Oceanogr., 52, 1725, https://doi.org/10.1007/BF02236530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, T.-L., C.-R. Wu, and L.-Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221233, https://doi.org/10.1175/2010JPO4518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, https://doi.org/10.1038/44326.

  • Goni, G., and Coauthors, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190197, https://doi.org/10.5670/oceanog.2009.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, G., and W. Huang, 2008: Pacific decadal oscillation and sea level variability in the Bohai, Yellow, and East China Seas. J. Phys. Oceanogr., 38, 27722783, https://doi.org/10.1175/2008JPO3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsin, Y.-C., 2016: Trends of the pathways and intensities of surface Equatorial Current System in the North Pacific Ocean. J. Climate, 29, 66936710, https://doi.org/10.1175/JCLI-D-15-0850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., I.-I. Lin, C. Chou, and R.-H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, https://doi.org/10.1038/ncomms8188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2015: Evaluation of the GECCO2 ocean synthesis: Transports of volume, heat and freshwater in the Atlantic. Quart. J. Roy. Meteor. Soc., 141, 166181, https://doi.org/10.1002/qj.2347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1984: Annual cycle of temperature and heat storage in the World Ocean. J. Phys. Oceanogr., 14, 727746, https://doi.org/10.1175/1520-0485(1984)014<0727:ACOTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pan, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoon’s intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, S. Levitus, Ed., NOAA Atlas NESDIS 73, 40 pp.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., C.-C. Lien, I.-I. Lin, and S.-P. Xie, 2015: Tropical cyclone–induced ocean response: A comparative study of the South China Sea and tropical northwest Pacific. J. Climate, 28, 59525968, https://doi.org/10.1175/JCLI-D-14-00651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I.-I. Lin, C.-R. Wu, D.-S. Ko, and W.-T. Liu, 2007: Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Trans. Geosci. Remote Sens., 45, 16161630, https://doi.org/10.1109/TGRS.2007.895950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 24652482, https://doi.org/10.1175/2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and A. Schmittner, 1997: Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 388, 862865, https://doi.org/10.1038/42224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, B., P. Tkalich, and P. Malanotte-Rizzoli, 2017: Regime shift of the South China Sea SST in the late 1990s. Climate Dyn., 48, 18731882, https://doi.org/10.1007/s00382-016-3178-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, https://doi.org/10.1029/97JC02905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, https://doi.org/10.1175/JAS4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., 2013: Interannual modulation of the Pacific decadal oscillation (PDO) on the low-latitude western North Pacific. Prog. Oceanogr., 110, 4958, https://doi.org/10.1016/j.pocean.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., Y.-L. Wang, Y.-F. Lin, T.-L. Chiang, and C.-C. Wu, 2016: Weakening of the Kuroshio intrusion into the South China Sea under the global warming hiatus. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 50645070, https://doi.org/10.1109/JSTARS.2016.2574941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, https://doi.org/10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: Physical Oceanography of the Southeast Asian Waters. Vol. 2, Scientific Results of Marine Investigation of the South China Sea and the Gulf of Thailand. Scripps Institution of Oceanography, 195 pp.

  • Yin, Y., O. Alves, and P. R. Oke, 2011: An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev., 139, 786808, https://doi.org/10.1175/2010MWR3419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., M.-M. Lu, and S. T. Ki, 2012: A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett., 7, 034025, https://doi.org/10.1088/1748-9326/7/3/034025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z.-W., I.-I. Lin, B. Wang, H.-C. Huang, and C.-H. Chen, 2015: A long neglected damper in the El Niño–typhoon relationship: A ‘Gaia-like’ process. Sci. Rep., 5, 11103, https://doi.org/10.1038/srep11103.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 55 4
PDF Downloads 108 31 4