Influence of the Pacific–Japan Pattern on Indian Summer Monsoon Rainfall

G. Srinivas Indian Institute of Tropical Meteorology, Pune, and Department of Meteorology and Oceanography, Andhra University, Visakhapatnam, India

Search for other papers by G. Srinivas in
Current site
Google Scholar
PubMed
Close
,
Jasti S. Chowdary Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by Jasti S. Chowdary in
Current site
Google Scholar
PubMed
Close
,
Yu Kosaka Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

Search for other papers by Yu Kosaka in
Current site
Google Scholar
PubMed
Close
,
C. Gnanaseelan Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by C. Gnanaseelan in
Current site
Google Scholar
PubMed
Close
,
Anant Parekh Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by Anant Parekh in
Current site
Google Scholar
PubMed
Close
, and
K. V. S. R. Prasad Department of Meteorology and Oceanography, Andhra University, Visakhapatnam, India

Search for other papers by K. V. S. R. Prasad in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to extract the PJ pattern as the leading mode of circulation variability. The partial correlation analysis of the leading principal component reveals that the positive PJ pattern, which features anticyclonic and cyclonic low-level circulation anomalies over the tropical WNP and around Japan respectively, enhances the rainfall over the southern and northern parts of India. The northwestward propagating Rossby waves, in response to intensified convection over the Maritime Continent reinforced by low-level convergence in the southern flank of westward extended tropical WNP anticyclone, increase rainfall over southern peninsular India. Meanwhile, the anomalous moisture transport from the warm Bay of Bengal due to anomalous southerlies at the western edge of the low-level anticyclone extending from the tropical WNP helps to enhance the rainfall over northern India. The atmospheric general circulation model forced with climatological sea surface temperature confirms this atmospheric pathway through the westward propagating Rossby waves. Furthermore, the north Indian Ocean (NIO) warming induced by easterly wind anomalies along the southern periphery of the tropical WNP–NIO anticyclone enhances local convection, which in turn feeds back to the WNP convection anomalies. This coupled nature via interbasin feedback between the PJ pattern and NIO is confirmed using coupled model sensitivity experiments. These results are important in identifying new sources of ISM variability/predictability on the interannual time scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. S. Chowdary, jasti@tropmet.res.in

Abstract

This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to extract the PJ pattern as the leading mode of circulation variability. The partial correlation analysis of the leading principal component reveals that the positive PJ pattern, which features anticyclonic and cyclonic low-level circulation anomalies over the tropical WNP and around Japan respectively, enhances the rainfall over the southern and northern parts of India. The northwestward propagating Rossby waves, in response to intensified convection over the Maritime Continent reinforced by low-level convergence in the southern flank of westward extended tropical WNP anticyclone, increase rainfall over southern peninsular India. Meanwhile, the anomalous moisture transport from the warm Bay of Bengal due to anomalous southerlies at the western edge of the low-level anticyclone extending from the tropical WNP helps to enhance the rainfall over northern India. The atmospheric general circulation model forced with climatological sea surface temperature confirms this atmospheric pathway through the westward propagating Rossby waves. Furthermore, the north Indian Ocean (NIO) warming induced by easterly wind anomalies along the southern periphery of the tropical WNP–NIO anticyclone enhances local convection, which in turn feeds back to the WNP convection anomalies. This coupled nature via interbasin feedback between the PJ pattern and NIO is confirmed using coupled model sensitivity experiments. These results are important in identifying new sources of ISM variability/predictability on the interannual time scale.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. S. Chowdary, jasti@tropmet.res.in
Save
  • Achuthavarier, D., V. Krishnamurthy, B. P. Kirtman, and B. Huang, 2012: Role of the Indian Ocean in the ENSO–Indian summer monsoon teleconnection in the NCEP Climate Forecast System. J. Climate, 25, 24902508, https://doi.org/10.1175/JCLI-D-11-00111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., 2010: Moist dynamical linkage between the equatorial Indian Ocean and the South Asian monsoon trough. J. Atmos. Sci., 67, 589610, https://doi.org/10.1175/2009JAS2991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., P. Liu, and S.-P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 41504167, https://doi.org/10.1175/JCLI3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., C.-C. Wu, and E.-J. Cha, 2010: Changes of tropical cyclone activity by Pacific–Japan teleconnection pattern in the western North Pacific. J. Geophys. Res., 115, D19114, https://doi.org/10.1029/2010JD013866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607621, https://doi.org/10.1007/s00382-009-0686-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, H. Tokinaga, Y. M. Okumura, H. Kubota, N. C. Johnson, and X.-T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007. J. Climate, 25, 17221744, https://doi.org/10.1175/JCLI-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., C. Gnanaseelan, and S. Chakravorty, 2013: Impact of northwest Pacific anticyclone on the Indian summer monsoon region. Theor. Appl. Climatol., 113, 329336, https://doi.org/10.1007/s00704-012-0785-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. A. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 27072727, https://doi.org/10.1007/s00382-016-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delsole, T., and J. Shukla, 2002: Linear prediction of the Indian monsoon rainfall. Centre for Ocean–Land–Atmosphere Studies (COLA) Tech. Rep. CTR 114-58, 48 pp.

  • Du, Y., S.-P. Xie, G. Huang, and K.-M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., M. Rajeevan, and R. Nanjundiah, 2005: Monsoon prediction—Why yet another failure? Curr. Sci., 88, 13891400, http://www.jstor.org/stable/24110705.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123, https://doi.org/10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 1998: Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks. J. Climate, 11, 501522, https://doi.org/10.1175/1520-0442(1998)011<0501:IVOISM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and P. K. Xavier, 2005: ENSO control on the South Asian monsoon through the length of the rainy season. Geophys. Res. Lett., 32, L18717, https://doi.org/10.1029/2005GL023216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S., M. J. Harrison, R. C. Pacanowski, and R. Anthony, 2004: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 342 pp.

  • Harris, I., P. Jones, T. Osborn, and D. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparison. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, X. Liu, Z. Zuo, and B. Jha, 2013: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, https://doi.org/10.1175/JCLI-D-12-00437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., B. Gokulapalan, A. Nair, and S. S. Wilson, 2013: Variability of summer monsoon rainfall in India on inter-annual and decadal time scales. Atmos. Ocean. Sci. Lett., 6, 398403, https://doi.org/10.3878/j.issn.1674-2834.13.0044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. K., and A. Rai, 2015: Combined interplay of the Atlantic multidecadal oscillation and the interdecadal Pacific oscillation on rainfall and its extremes over Indian subcontinent. Climate Dyn., 44, 33393359, https://doi.org/10.1007/s00382-014-2333-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M. K., and F. Kucharski, 2017: Impact of interdecadal Pacific Oscillation on Indian summer monsoon rainfall: An assessment from CMIP5 climate models. Climate Dyn., 48, 23752391, https://doi.org/10.1007/s00382-016-3210-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawamura, R., T. Matsumura, and S. Iizuka, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño–Southern Oscillation coupling. J. Geophys. Res., 106, 46814693, https://doi.org/10.1029/2000JD900610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, https://doi.org/10.1126/science.284.5423.2156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., M. Hoerling, and B. Rajagopalan, 2005: Advancing dynamical prediction of Indian monsoon rainfall. Geophys. Res. Lett., 32, L08704, https://doi.org/10.1029/2004GL021979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna Kumar, K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119. https://doi.org/10.1126/science.1131152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 23972410, https://doi.org/10.1007/s00382-013-1856-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and B. N. Goswami, 2000: Indian monsoon–ENSO relationship on interdecadal timescale. J. Climate, 13, 579595, https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, C. E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 41964216, https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn., 21, 233242, https://doi.org/10.1007/s00382-003-0330-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., K. V. Ramesh, B. K. Samala, G. Meyers, J. M. Slingo, and M. J. Fennessy, 2006: Indian Ocean–monsoon coupled interactions and impending monsoon droughts. Geophys. Res. Lett., 33, L08711, https://doi.org/10.1029/2006GL025811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., Y. Kosaka, and S.-P. Xie, 2016: A 117-year long index of the Pacific–Japan pattern with application to interdecadal variability. Int. J. Climatol., 36, 15751589, https://doi.org/10.1002/joc.4441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1990: Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: Monsoon dynamics. J. Atmos. Sci., 47, 14431462, https://doi.org/10.1175/1520-0469(1990)047<1443:OOLFOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoon as simulated in GCM experiments. J. Climate, 13, 42874309, https://doi.org/10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, and T. Li, 2014: Influences of the Pacific–Japan teleconnection pattern on synoptic-scale variability in the western North Pacific. J. Climate, 27, 140154, https://doi.org/10.1175/JCLI-D-13-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and H. Xu, 2017: Intermember variability of the summer northwest Pacific subtropical anticyclone in the ensemble forecast. J. Climate, 30, 39273941, https://doi.org/10.1175/JCLI-D-16-0638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malik, A., and Coauthors, 2017: Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean–atmosphere–chemistry climate model SOCOL-MPIOM. Climate Dyn., 49, 35513572, https://doi.org/10.1007/s00382-017-3529-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780792, https://doi.org/10.1175/2008JCLI2552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impacts on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., D. Pai, R. Anil Kumar, and B. Lal, 2007: New statistical models for long-range forecasting of southwest monsoon rainfall over India. Climate Dyn., 28, 813828, https://doi.org/10.1007/s00382-006-0197-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker, 2017: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52, https://doi.org/10.3390/atmos8030052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, S., and M. Wilk, 1965: An analysis of variance test for normality (complete samples). Biometrika, 52, 591611, https://doi.org/10.1093/biomet/52.3-4.591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1984: Predictability of time averages: Part II. The influence of the boundary forcing. Problems and Prospects in Long and Medium Range Weather Forecasting, D. M. Burridge and E. Kallen, Eds., Springer-Verlag, 155–206.

    • Crossref
    • Export Citation
  • Shukla, J., and D. A. Paolino, 1983: The Southern Oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon. Wea. Rev., 111, 18301837, https://doi.org/10.1175/1520-0493(1983)111<1830:TSOALR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivas, G., J. S. Chowdary, C. Gnanaseelan, K. V. S. R. Prasad, A. Karmakar, and A. Parekh, 2018: Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model. Climate Dyn., 50, 16591673, https://doi.org/10.1007/s00382-017-3713-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., R. Greatbatch, W. Park, and M. Latif, 2010: Two major modes of variability of the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 829841, https://doi.org/10.1002/qj.635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, P., P. Delecluse, S. Labattu, and L. Terray, 2003: Sea surface temperature associations with the late Indian summer monsoon. Climate Dyn., 21, 593618, https://doi.org/10.1007/s00382-003-0354-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and J. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587595, https://doi.org/10.1038/nclimate1495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, https://doi.org/10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., W.-R. Huang, H.-H. Hsu, and R. R. Gillies, 2015: Role of the strengthened El Niño teleconnection in the May 2015 floods over the southern Great Plains. Geophys. Res. Lett., 42, 81408146, https://doi.org/10.1002/2015GL065211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc., 129, 34393468, https://doi.org/10.1256/qj.02.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Impacts of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17, 30373054, https://doi.org/10.1175/1520-0442(2004)017<3037:IOTIOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., J. L. Chen, and W. Chen, 2012: Different types of ENSO influences on the Indian summer monsoon variability. J. Climate, 25, 903920, https://doi.org/10.1175/JCLI-D-11-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, https://doi.org/10.1175/2010JCLI3429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. L., Q. Y. Liu, S.-P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and K.-M. Lau, 1998: Influence of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11, 32303246, https://doi.org/10.1175/1520-0442(1998)011<3230:IOSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 839 238 28
PDF Downloads 606 133 9