An Assessment of High-Resolution Gridded Temperature Datasets over California

Daniel Walton Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California

Search for other papers by Daniel Walton in
Current site
Google Scholar
PubMed
Close
and
Alex Hall Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Alex Hall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution gridded datasets are in high demand because they are spatially complete and include important finescale details. Previous assessments have been limited to two to three gridded datasets or analyzed the datasets only at the station locations. Here, eight high-resolution gridded temperature datasets are assessed two ways: at the stations, by comparing with Global Historical Climatology Network–Daily data; and away from the stations, using physical principles. This assessment includes six station-based datasets, one interpolated reanalysis, and one dynamically downscaled reanalysis. California is used as a test domain because of its complex terrain and coastlines, features known to differentiate gridded datasets. As expected, climatologies of station-based datasets agree closely with station data. However, away from stations, spread in climatologies can exceed 6°C. Some station-based datasets are very likely biased near the coast and in complex terrain, due to inaccurate lapse rates. Many station-based datasets have large unphysical trends (>1°C decade−1) due to unhomogenized or missing station data—an issue that has been fixed in some datasets by using homogenization algorithms. Meanwhile, reanalysis-based gridded datasets have systematic biases relative to station data. Dynamically downscaled reanalysis has smaller biases than interpolated reanalysis, and has more realistic variability and trends. Dynamical downscaling also captures snow–albedo feedback, which station-based datasets miss. Overall, these results indicate that 1) gridded dataset choice can be a substantial source of uncertainty, and 2) some datasets are better suited for certain applications.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Walton, waltond@ucla.edu

Abstract

High-resolution gridded datasets are in high demand because they are spatially complete and include important finescale details. Previous assessments have been limited to two to three gridded datasets or analyzed the datasets only at the station locations. Here, eight high-resolution gridded temperature datasets are assessed two ways: at the stations, by comparing with Global Historical Climatology Network–Daily data; and away from the stations, using physical principles. This assessment includes six station-based datasets, one interpolated reanalysis, and one dynamically downscaled reanalysis. California is used as a test domain because of its complex terrain and coastlines, features known to differentiate gridded datasets. As expected, climatologies of station-based datasets agree closely with station data. However, away from stations, spread in climatologies can exceed 6°C. Some station-based datasets are very likely biased near the coast and in complex terrain, due to inaccurate lapse rates. Many station-based datasets have large unphysical trends (>1°C decade−1) due to unhomogenized or missing station data—an issue that has been fixed in some datasets by using homogenization algorithms. Meanwhile, reanalysis-based gridded datasets have systematic biases relative to station data. Dynamically downscaled reanalysis has smaller biases than interpolated reanalysis, and has more realistic variability and trends. Dynamical downscaling also captures snow–albedo feedback, which station-based datasets miss. Overall, these results indicate that 1) gridded dataset choice can be a substantial source of uncertainty, and 2) some datasets are better suited for certain applications.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Walton, waltond@ucla.edu
Save
  • Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, https://doi.org/10.1002/joc.3413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behnke, R., S. Vavrus, A. Allstadt, T. Albright, W. Thogmartin, and V. Radeloff, 2016a: Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl., 26, 13381351, https://doi.org/10.1002/15-1061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behnke, R., S. Vavrus, A. Allstadt, T. Albright, W. Thogmartin, and V. Radeloff, 2016b: Data from: Evaluation of downscaled, gridded climate data for the conterminous United States. Dryad Digital Repository, https://doi.org/10.5061/dryad.7tv80.

    • Crossref
    • Export Citation
  • Bishop, D. A., and C. M. Beier, 2013: Assessing uncertainty in high-resolution spatial climate data across the US Northeast. PLoS One, 8, e70260, https://doi.org/10.1371/journal.pone.0070260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, https://doi.org/10.1007/s10584-009-9583-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, https://doi.org/10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, https://doi.org/10.1002/joc.1322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., D. R. Conklin, and M. H. Unsworth, 2010: Local atmospheric decoupling in complex terrain alters climate change impacts. Int. J. Climatol., 30, 18571864, doi:10.1002/joc.2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, Eds., 2016: The Climate Data Guide: Atmospheric reanalysis: Overview & comparison tables. UCAR/NCAR, https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables.

  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, https://doi.org/10.1175/2010JAMC2375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, D. K., V. V. Salomonson, and G. A. Riggs, 2006: MODIS/Terra snow cover monthly L3 global 0.05 deg CMG, version 5 (April 2000–December 2006 subset). National Snow and Ice Data Center, accessed 31 July 2015, https://doi.org/10.5067/IPPLURB6RPCN.

    • Crossref
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 2005: Production of temporally consistent gridded precipitation and temperature fields for the continental United States. J. Hydrometeor., 6, 330336, https://doi.org/10.1175/JHM420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Coauthors, 2010: Chapter 3: Historical meteorological driving data. Final project report for the Columbia basin climate change scenarios project. University of Washington, accessed 18 January 2017, http://www.hydro.washington.edu/2860/report/.

  • Hidalgo, H. G., and Coauthors, 2009: Detection and attribution of streamflow timing changes to climate change in the western United States. J. Climate, 22, 38383855, https://doi.org/10.1175/2009JCLI2470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, https://doi.org/10.1002/joc.1276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holden, Z. A., J. T. Abatzoglou, C. H. Luce, and L. S. Baggett, 2011: Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agric. For. Meteor., 151, 10661073, https://doi.org/10.1016/j.agrformet.2011.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., and D. R. Cayan, 2013: The variability of California summertime marine stratus: Impacts on surface air temperatures. J. Geophys. Res. Atmos., 118, 91059122, https://doi.org/10.1002/jgrd.50652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnstone, J. A., and T. E. Dawson, 2010: Climatic context and ecological implications of summer fog decline in the coast redwood region. Proc. Natl. Acad. Sci. USA, 107, 45334538, https://doi.org/10.1073/pnas.0915062107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, H.-M. H., and M. Kanamitsu, 1994: The NMC Nested Regional Spectral Model. Mon. Wea. Rev., 122, 326, https://doi.org/10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and H. Kanamaru, 2007: Fifty-seven-year California Reanalysis Downscaling at 10 km (CaRD10). Part I: System detail and validation with observations. J. Climate, 20, 55535571, https://doi.org/10.1175/2007JCLI1482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letcher, T. W., and J. R. Minder, 2015: Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J. Climate, 28, 75767595, https://doi.org/10.1175/JCLI-D-15-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, https://doi.org/10.1175/JCLI-D-12-00508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., N. Pepin, and C. Rochford, 2008: Automated algorithm for mapping regions of cold-air pooling in complex terrain. J. Geophys. Res., 113, D22107, https://doi.org/10.1029/2008JD009879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams, 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, https://doi.org/10.1175/2008JCLI2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams, and R. S. Vose, 2009: The United States Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007, https://doi.org/10.1175/2008BAMS2613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012a: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Coauthors, 2012b: Global Historical Climatology Network–Daily (GHCN-Daily), version 3. NOAA National Climatic Data Center. https://doi.org/10.7289/V5D21VHZ.

    • Crossref
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizukami, N., M. P. Clark, A. G. Slater, L. D. Brekke, M. M. Elsner, J. R. Arnold, and S. Gangopadhyay, 2014: Hydrologic implications of different large-scale meteorological model forcing datasets in mountainous regions. J. Hydrometeor., 15, 474488, https://doi.org/10.1175/JHM-D-13-036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and Coauthors, 2015: Gridded ensemble precipitation and temperature estimates for the contiguous United States. J. Hydrometeor., 16, 24812500, https://doi.org/10.1175/JHM-D-15-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., A. Ballantyne, K. Jencso, M. Sweet, and S. W. Running, 2015a: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int. J. Climatol., 35, 22582279, https://doi.org/10.1002/joc.4127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., S. Z. Dobrowski, A. P. Ballantyne, A. E. Klene, and S. W. Running, 2015b: Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett., 42, 153161, https://doi.org/10.1002/2014GL062803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R., and Coauthors, 2007: Unresolved issues with the assessment of multidecadal global land surface temperature trends. J. Geophys. Res., 112, D24S08, https://doi.org/10.1029/2006JD008229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, https://doi.org/10.1175/JHM-D-14-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., R. Steed, C. F. Mass, and P. H. Zahn, 2008: A high-resolution climate model for the U.S. Pacific Northwest: Mesoscale feedbacks and local responses to climate change. J. Climate, 21, 57085726, https://doi.org/10.1175/2008JCLI2090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, Eds., D. Reidel, 133–145.

    • Crossref
    • Export Citation
  • Simpson, J. J., G. L. Hufford, C. Daly, J. S. Berg, and M. D. Fleming, 2005: Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods. Arctic, 58, 137161, https://doi.org/10.14430/arctic407.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stahl, K., R. D. Moore, J. A. Floyer, M. G. Asplin, and I. G. McKendry, 2006: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. For. Meteor., 139, 224236, https://doi.org/10.1016/j.agrformet.2006.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stefanova, L., V. Misra, S. Chan, M. Griffin, J. J. O’Brien, and T. J. Smith III, 2012: A proxy for high-resolution regional reanalysis for the Southeast United States: Assessment of precipitation variability in dynamically downscaled reanalyses. Climate Dyn., 38, 24492466, https://doi.org/10.1007/s00382-011-1230-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoklosa, J., C. Daly, S. Foster, M. Ashcroft, and D. Warton, 2015: A climate of uncertainty: Accounting for error and spatial variability in climate variables for species distribution models. Methods Ecol. Evol., 6, 412423, https://doi.org/10.1111/2041-210X.12217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., S. W. Running, and M. A. White, 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214251, https://doi.org/10.1016/S0022-1694(96)03128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook, 2016: Daymet: Daily surface weather data on a 1-km grid for North America, version 3, 1980–2012. ORNL DAAC, Oak Ridge, accessed 19 November 2016, https://doi.org/10.3334/ORNLDAAC/1328.

    • Crossref
    • Export Citation
  • Vose, R. S., S. Applequist, M. Squires, I. Durre, M. Menne, C. N. Williams Jr., C. Fenimore, K. Gleason, and D. Arndt, 2014: Improved historical temperature and precipitation time series for U.S. climate divisions. J. Appl. Meteor. Climatol., 53, 12321251, https://doi.org/10.1175/JAMC-D-13-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, D. B., F. Sun, A. Hall, and S. Capps, 2015: A hybrid dynamical–statistical downscaling technique. Part I: Development and validation of the technique. J. Climate, 28, 45974617, https://doi.org/10.1175/JCLI-D-14-00196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walton, D. B., A. Hall, N. Berg, M. Schwartz, and F. Sun, 2017: Incorporating snow albedo feedback into downscaled temperature and snow cover projections for California’s Sierra Nevada. J. Climate, 30, 14171438, https://doi.org/10.1175/JCLI-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, K. J.-P. M., S. Kotlarski, S. C. Scherrer, and C. Schär, 2017: The Alpine snow-albedo feedback in regional climate models. Climate Dyn., 48, 11091124, https://doi.org/10.1007/s00382-016-3130-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1185 338 27
PDF Downloads 963 257 22