The Response of the Ozone Layer to Quadrupled CO2 Concentrations

G. Chiodo Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by G. Chiodo in
Current site
Google Scholar
PubMed
Close
,
L. M. Polvani Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by L. M. Polvani in
Current site
Google Scholar
PubMed
Close
,
D. R. Marsh National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. R. Marsh in
Current site
Google Scholar
PubMed
Close
,
A. Stenke IAC ETH, Zurich, Switzerland

Search for other papers by A. Stenke in
Current site
Google Scholar
PubMed
Close
,
W. Ball Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
IAC ETH, Zurich, Switzerland

Search for other papers by W. Ball in
Current site
Google Scholar
PubMed
Close
,
E. Rozanov Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
IAC ETH, Zurich, Switzerland

Search for other papers by E. Rozanov in
Current site
Google Scholar
PubMed
Close
,
S. Muthers Deutscher Wetterdienst, Research Center Human Biometeorology, Freiburg, Germany

Search for other papers by S. Muthers in
Current site
Google Scholar
PubMed
Close
, and
K. Tsigaridis Center for Climate Systems Research, Columbia University, New York, New York
NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by K. Tsigaridis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An accurate quantification of the stratospheric ozone feedback in climate change simulations requires knowledge of the ozone response to increased greenhouse gases. Here, an analysis is presented of the ozone layer response to an abrupt quadrupling of CO2 concentrations in four chemistry–climate models. The authors show that increased CO2 levels lead to a decrease in ozone concentrations in the tropical lower stratosphere, and an increase over the high latitudes and throughout the upper stratosphere. This pattern is robust across all models examined here, although important intermodel differences in the magnitude of the response are found. As a result of the cancellation between the upper- and lower-stratospheric ozone, the total column ozone response in the tropics is small, and appears to be model dependent. A substantial portion of the spread in the tropical column ozone is tied to intermodel spread in upwelling. The high-latitude ozone response is strongly seasonally dependent, and shows increases peaking in late winter and spring of each hemisphere, with prominent longitudinal asymmetries. The range of ozone responses to CO2 reported in this paper has the potential to induce significant radiative and dynamical effects on the simulated climate. Hence, these results highlight the need of using an ozone dataset consistent with CO2 forcing in models involved in climate sensitivity studies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0492.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Chiodo, chiodo@columbia.edu

Abstract

An accurate quantification of the stratospheric ozone feedback in climate change simulations requires knowledge of the ozone response to increased greenhouse gases. Here, an analysis is presented of the ozone layer response to an abrupt quadrupling of CO2 concentrations in four chemistry–climate models. The authors show that increased CO2 levels lead to a decrease in ozone concentrations in the tropical lower stratosphere, and an increase over the high latitudes and throughout the upper stratosphere. This pattern is robust across all models examined here, although important intermodel differences in the magnitude of the response are found. As a result of the cancellation between the upper- and lower-stratospheric ozone, the total column ozone response in the tropics is small, and appears to be model dependent. A substantial portion of the spread in the tropical column ozone is tied to intermodel spread in upwelling. The high-latitude ozone response is strongly seasonally dependent, and shows increases peaking in late winter and spring of each hemisphere, with prominent longitudinal asymmetries. The range of ozone responses to CO2 reported in this paper has the potential to induce significant radiative and dynamical effects on the simulated climate. Hence, these results highlight the need of using an ozone dataset consistent with CO2 forcing in models involved in climate sensitivity studies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0492.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Chiodo, chiodo@columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 1000.61 KB)
Save
  • Agosta, E. A., and P. O. Canziani, 2011: Austral spring stratospheric and tropospheric circulation interannual variability. J. Climate, 24, 26292647, https://doi.org/10.1175/2010JCLI3418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Andrews, T., J. M. Gregory, M. J. Webb, and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J., and R. J. Wilson, 2006: Ensemble simulations of the decline and recovery of stratospheric ozone. J. Geophys. Res., 111, D16314, https://doi.org/10.1029/2005JD006907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, A., A. T. Archibald, A. C. Maycock, P. Telford, N. L. Abraham, X. Yang, P. Braesicke, and J. A. Pyle, 2014: Lightning NOx, a key chemistry–climate interaction: Impacts of future climate change and consequences for tropospheric oxidising capacity. Atmos. Chem. Phys., 14, 98719881, https://doi.org/10.5194/acp-14-9871-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, A., A. C. Maycock, A. T. Archibald, N. L. Abraham, P. Telford, P. Braesicke, and J. A. Pyle, 2016: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos. Chem. Phys., 16, 27272746, https://doi.org/10.5194/acp-16-2727-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., and S. Solomon, 2005: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Atmospheric and Oceanic Sciences Library, Vol. 32, Kluwer Academic, 646 pp.

    • Crossref
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, https://doi.org/10.1002/2013RG000448.

  • Butler, A. H., J. S. Daniel, R. W. Portmann, A. R. Ravishankara, P. J. Young, D. W. Fahey, and K. H. Rosenlof, 2016: Diverse policy implications for future ozone and surface UV in a changing climate. Environ. Res. Lett., 11, 064017, https://doi.org/10.1088/1748-9326/11/6/064017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., and Coauthors, 2013: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos., 118, 24942505, https://doi.org/10.1002/jgrd.50125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodo, G., and L. M. Polvani, 2016: Reduction of climate sensitivity to solar forcing due to stratospheric ozone feedback. J. Climate, 29, 46514663, https://doi.org/10.1175/JCLI-D-15-0721.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodo, G., and L. M. Polvani, 2017: Reduced Southern Hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback. Geophys. Res. Lett., 44, 465474, https://doi.org/10.1002/2016GL071011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11 26711 292, https://doi.org/10.5194/acp-11-11267-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J. A., N. P. Gillett, and S. P. E. Keeley, 2008: Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone. Geophys. Res. Lett., 35, L07806, https://doi.org/10.1029/2007GL032698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., M. R. Schoeberl, T. Wang, S. M. Davis, and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, https://doi.org/10.1073/pnas.1310344110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietmüller, S., M. Ponater, and R. Sausen, 2014: Interactive ozone induces a negative feedback in CO2-driven climate change simulations. J. Geophys. Res. Atmos., 119, 17961805, https://doi.org/10.1002/2013JD020575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2010: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys., 10, 94519472, https://doi.org/10.5194/acp-10-9451-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 50295060, https://doi.org/10.1002/jgrd.50316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, https://doi.org/10.1002/jgrd.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gabriel, A., H. Körnich, S. Lossow, D. H. W. Peters, J. Urban, and D. Murtagh, 2011: Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001–2010. Atmos. Chem. Phys., 11, 98659885, https://doi.org/10.5194/acp-11-9865-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, https://doi.org/10.1175/2008JAS2712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garny, H., V. Grewe, M. Dameris, G. E. Bodeker, and A. Stenke, 2011: Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs. Geosci. Model Dev., 4, 271286, https://doi.org/10.5194/gmd-4-271-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. F. Scinocca, D. A. Plummer, and M. C. Reader, 2009: Sensitivity of climate to dynamically-consistent zonal asymmetries in ozone. Geophys. Res. Lett., 36, L10809, https://doi.org/10.1029/2009GL037246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J., and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21, 5871, https://doi.org/10.1175/2007JCLI1834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: Is climate sensitivity related to dynamical sensitivity? A Southern Hemisphere perspective. Geophys. Res. Lett., 41, 534540, https://doi.org/10.1002/2013GL058466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grytsai, A. V., O. M. Evtushevsky, O. V. Agapitov, A. R. Klekociuk, and G. P. Milinevsky, 2007: Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25, 361374, https://doi.org/10.5194/angeo-25-361-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., and J. A. Pyle, 1982: Ozone perturbation experiments in a two-dimensional circulation model. Quart. J. Roy. Meteor. Soc., 108, 551574, https://doi.org/10.1002/qj.49710845705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, https://doi.org/10.1029/2005JD005776.

  • Hegglin, M. I., and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci., 2, 687691, https://doi.org/10.1038/ngeo604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horowitz, L. W., and Coauthors, 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108, 4784, https://doi.org/10.1029/2002JD002853.

    • Search Google Scholar
    • Export Citation
  • Iglesias-Suarez, F., P. J. Young, and O. Wild, 2016: Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble. Atmos. Chem. Phys., 16, 343363, https://doi.org/10.5194/acp-16-343-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaksen, I. S. A., and Coauthors, 2009: Atmospheric composition change: Climate–chemistry interactions. Atmos. Environ., 43, 51385192, https://doi.org/10.1016/j.atmosenv.2009.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonsson, A. I., J. de Grandpré, V. I. Fomichev, J. C. McConnell, and S. R. Beagley, 2004: Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback. J. Geophys. Res., 109, D24103, https://doi.org/10.1029/2004JD005093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnison, D. E., and Coauthors, 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., D. J. Wuebbles, and J. A. Logan, 1990: Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res., 95, 99719981, https://doi.org/10.1029/JD095iD07p09971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langematz, U., S. Meul, K. Grunow, E. Romanowsky, S. Oberländer, J. Abalichin, and A. Kubin, 2014: Future Arctic temperature and ozone: The role of stratospheric composition changes. J. Geophys. Res. Atmos., 119, 20922112, https://doi.org/10.1002/2013JD021100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., J.-F. Lamarque, A. J. Conley, and L. M. Polvani, 2016: Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1 (WACCM). Geophys. Res. Lett., 43, 39283934, https://doi.org/10.1002/2016GL068344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meul, S., U. Langematz, S. Oberländer, H. Garny, and P. Jöckel, 2014: Chemical contribution to future tropical ozone change in the lower stratosphere. Atmos. Chem. Phys., 14, 29592971, https://doi.org/10.5194/acp-14-2959-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meul, S., S. Oberländer-Hayn, J. Abalichin, and U. Langematz, 2015: Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past. Atmos. Chem. Phys., 15, 68976911, https://doi.org/10.5194/acp-15-6897-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muthers, S., and Coauthors, 2014: The coupled atmosphere–chemistry–ocean model SOCOL-MPIOM. Geosci. Model Dev., 7, 21572179, https://doi.org/10.5194/gmd-7-2157-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muthers, S., C. C. Raible, E. Rozanov, and T. F. Stocker, 2016: Response of the AMOC to reduced solar radiation—The modulating role of atmospheric chemistry. Earth Syst. Dyn., 7, 877892, https://doi.org/10.5194/esd-7-877-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Noda, S., and Coauthors, 2017: Impact of interactive chemistry of stratospheric ozone on Southern Hemisphere paleoclimate simulation. J. Geophys. Res. Atmos., 122, 878895, https://doi.org/10.1002/2016JD025508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowack, P. J., N. L. Abraham, A. C. Maycock, P. Braesicke, J. M. Gregory, M. M. Joshi, A. Osprey, and J. A. Pyle, 2015: A large ozone-circulation feedback and its implications for global warming assessments. Nat. Climate Change, 5, 4145, https://doi.org/10.1038/nclimate2451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowack, P. J., P. Braesicke, N. L. Abraham, and J. A. Pyle, 2017: On the role of ozone feedback in the ENSO amplitude response under global warming. Geophys. Res. Lett., 44, 38583866, https://doi.org/10.1002/2016GL072418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oman, L. D., and Coauthors, 2010: Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. J. Geophys. Res., 115, D24306, https://doi.org/10.1029/2010JD014362.

    • Search Google Scholar
    • Export Citation
  • Revell, L. E., G. E. Bodeker, P. E. Huck, B. E. Williamson, and E. Rozanov, 2012: The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4. Atmos. Chem. Phys., 12, 11 30911 317, https://doi.org/10.5194/acp-12-11309-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, S. P., and Coauthors, 2006: Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 15. NASA Jet Propulsion Laboratory Publ. 06-2, 523 pp.

  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2008: Dynamics, stratospheric ozone, and climate change. Atmos.–Ocean, 46, 117138, https://doi.org/10.3137/ao.460106.

  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, https://doi.org/10.1175/2010JAS3608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and Coauthors, 2013: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations. Atmos. Chem. Phys., 13, 26532689, https://doi.org/10.5194/acp-13-2653-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 15651588, https://doi.org/10.1256/qj.02.186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stenke, A., M. Schraner, E. Rozanov, T. Egorova, B. Luo, and T. Peter, 2013: The SOCOL version 3.0 chemistry–climate model: Description, evaluation, and implications from an advanced transport algorithm. Geosci. Model Dev., 6, 14071427, https://doi.org/10.5194/gmd-6-1407-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., L. Oman, P. A. Newman, R. S. Stolarski, S. Pawson, J. E. Nielsen, and J. Perlwitz, 2009: Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends. Geophys. Res. Lett., 36, L18701, https://doi.org/10.1029/2009GL040419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1992: Scientific assessment of ozone depletion: 1991. WMO/TD-25, 327 pp., https://acd-ext.gsfc.nasa.gov/Documents/O3_Assessments/Docs/WMO_UNEP_1991.pdf.

  • WMO, 2014: Scientific assessment of ozone depletion: 2014. WMO/TD-55, 416 pp., http://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/Full_report_2014_Ozone_Assessment.pdf.

  • Zubov, V., E. Rozanov, T. Egorova, I. Karol, and W. Schmutz, 2013: Role of external factors in the evolution of the ozone layer and stratospheric circulation in 21st century. Atmos. Chem. Phys., 13, 46974706, https://doi.org/10.5194/acp-13-4697-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1960 494 45
PDF Downloads 1342 313 11