Arctic Humidity Inversions: Climatology and Processes

Tuomas Naakka Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Tuomas Naakka in
Current site
Google Scholar
PubMed
Close
,
Tiina Nygård Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Tiina Nygård in
Current site
Google Scholar
PubMed
Close
, and
Timo Vihma Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Timo Vihma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The occurrence and characteristics of Arctic specific humidity inversions (SHIs) were examined on the basis of two reanalyses (ERA-Interim and JRA-55) and radiosonde sounding data from 2003 to 2014. Based on physical properties, the SHIs were divided into two main categories: SHIs below and above the 800-hPa level. Above the 800-hPa level, SHIs occurred simultaneously with relative humidity inversions and without the presence of a temperature inversion; these SHIs were probably formed when a moist air mass was advected over a dry air mass. SHIs below the 800-hPa level occurred simultaneously with temperature inversions in conditions of high relative humidity, which suggests that condensation had an important role in SHI formation. Below the 800-hPa level, SHI occurrence had a large seasonal and spatial variation, which depended on the surface heat budget. In winter, most SHIs were formed because of surface radiative cooling, and the occurrence of SHIs was high (even exceeding 90% of the time) on continents and over the ice-covered Arctic Ocean. In summer, the occurrence of SHIs was highest (70%–90%) over the coastal Arctic Ocean, where SHIs were generated by warm and moist air advection over a cold sea surface. In the reanalyses, the strongest SHIs occurred in summer over the Arctic Ocean. The comparisons between radiosonde soundings and the reanalyses showed that the main features of the seasonal and spatial variation of SHI occurrence and SHI strength were well represented in the reanalyses, but SHI strength was underestimated.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tuomas Naakka, tuomas.naakka@fmi.fi

Abstract

The occurrence and characteristics of Arctic specific humidity inversions (SHIs) were examined on the basis of two reanalyses (ERA-Interim and JRA-55) and radiosonde sounding data from 2003 to 2014. Based on physical properties, the SHIs were divided into two main categories: SHIs below and above the 800-hPa level. Above the 800-hPa level, SHIs occurred simultaneously with relative humidity inversions and without the presence of a temperature inversion; these SHIs were probably formed when a moist air mass was advected over a dry air mass. SHIs below the 800-hPa level occurred simultaneously with temperature inversions in conditions of high relative humidity, which suggests that condensation had an important role in SHI formation. Below the 800-hPa level, SHI occurrence had a large seasonal and spatial variation, which depended on the surface heat budget. In winter, most SHIs were formed because of surface radiative cooling, and the occurrence of SHIs was high (even exceeding 90% of the time) on continents and over the ice-covered Arctic Ocean. In summer, the occurrence of SHIs was highest (70%–90%) over the coastal Arctic Ocean, where SHIs were generated by warm and moist air advection over a cold sea surface. In the reanalyses, the strongest SHIs occurred in summer over the Arctic Ocean. The comparisons between radiosonde soundings and the reanalyses showed that the main features of the seasonal and spatial variation of SHI occurrence and SHI strength were well represented in the reanalyses, but SHI strength was underestimated.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tuomas Naakka, tuomas.naakka@fmi.fi
Save
  • Anderson, P. S., 1995: Mechanism for the behavior of hydroactive materials used in humidity sensors. J. Atmos. Oceanic Technol., 12, 662667, https://doi.org/10.1175/1520-0426(1995)012<0662:MFTBOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., P. S. Guest, P. O. G. Persson, C. W. Fairall, T. W. Horst, R. E. Moritz, and S. R. Semmer, 2002: Near-surface water vapor over polar sea ice is always near ice saturation. J. Geophys. Res., 107, 8033, https://doi.org/10.1029/2000JC000411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., and J. C. Stroeve, 2015: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophys. Res. Lett., 42, 44394446, https://doi.org/10.1002/2015GL063775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bring, A., and Coauthors, 2016: Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci., 121, 621649, https://doi.org/10.1002/2015JG003131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., S. T. Stegall, and X. Zeng, 2015: A climatology of tropospheric humidity inversions in five reanalyses. Atmos. Res., 153, 165187, https://doi.org/10.1016/j.atmosres.2014.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J., 1983: On the formation of continental polar air. J. Atmos. Sci., 40, 22782292, https://doi.org/10.1175/1520-0469(1983)040<2278:OTFOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devasthale, A., J. Sedlar, and M. Tjernström, 2011: Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes. Atmos. Chem. Phys., 11, 98139823, https://doi.org/10.5194/acp-11-9813-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, A., O. Zolina, and S. K. Gulev, 2016: Atmospheric moisture transport to the Arctic: Assessment of reanalyses and analysis of transport components. J. Climate, 29, 50615081, https://doi.org/10.1175/JCLI-D-15-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., and X. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteor. Soc., 89, 12571262.

  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368, https://doi.org/10.1175/JCLI3594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., D. M. White, J. J. Cassano, W. J. Gutowski Jr., L. D. Hinzman, M. M. Holland, M. A. Steele, and C. J. Vörösmarty, 2009: An Arctic hydrologic system in transition: Feedbacks and impacts on terrestrial, marine, and human life. J. Geophys. Res., 114, G04019, https://doi.org/10.1029/2008JG000902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., V. P. Walden, L. M. Miloshevich, W. L. Roth, and B. Halter, 2006: Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res., 111, D09S13, https://doi.org/10.1029/2005JD006636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingleby, B., 2017: An assessment of different radiosonde types 2015/2016. ECMWF Tech. Memo. 807, 69 pp., https://www.ecmwf.int/sites/default/files/elibrary/2017/17551-assessment-different-radiosonde-types-20152016.pdf.

  • Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. S. Guest, and R. E. Moritz, 2002a: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107, 8039, https://doi.org/10.1029/2000JC000439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002b: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, https://doi.org/10.1029/2000JC000423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobson, E., and T. Vihma, 2010: Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int. J. Climatol., 30, 21752194, https://doi.org/10.1002/joc.2039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus, 2012: Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys. Res. Lett., 39, L10802, https://doi.org/10.1029/2012GL051591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüpkes, C., T. Vihma, E. Jakobson, G. König‐Langlo, and A. Tetzlaff, 2010: Meteorological observations from ship cruises during summer to the central Arctic: A comparison with reanalysis data. Geophys. Res. Lett., 37, L09810, https://doi.org/10.1029/2010GL042724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX‐G and implications for AIRS validation. J. Geophys. Res., 111, D09S10, https://doi.org/10.1029/2005JD006083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., T. Valkonen, and T. Vihma, 2013: Antarctic low-tropospheric humidity inversions: 10-yr climatology. J. Climate, 26, 52055219, https://doi.org/10.1175/JCLI-D-12-00446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nygård, T., T. Valkonen, and T. Vihma, 2014: Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings. Atmos. Chem. Phys., 14, 19591971, https://doi.org/10.5194/acp-14-1959-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near‐surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2000JC000705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122, 11271151, https://doi.org/10.1002/qj.49712253306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savré, J., A. M. L. Ekman, G. Svensson, and M. Tjernström, 2015: Large-eddy simulations of an Arctic mixed-phase stratiform cloud observed during ISDAC: Sensitivity to moisture aloft, surface fluxes and large-scale forcing. Quart. J. Roy. Meteor. Soc., 141, 11771190, https://doi.org/10.1002/qj.2425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., 2014: Implications of limited liquid water path on static mixing within Arctic low-level clouds. J. Appl. Meteor. Climatol., 53, 27752789, https://doi.org/10.1175/JAMC-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlar, J., M. D. Shupe, and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate, 25, 23742393, https://doi.org/10.1175/JCLI-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, https://doi.org/10.1029/2005JC003424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. O. G. Persson, I. M. Brooks, M. Tjernström, J. Sedlar, T. Mauritsen, S. Sjogren, and C. Leck, 2013: Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmos. Chem. Phys., 13, 93799400, https://doi.org/10.5194/acp-13-9379-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148, https://doi.org/10.5194/acp-11-10127-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, P. O. G. Persson, H. Morrison, T. Yamaguchi, P. M. Caldwell, and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface-layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71, 574595, https://doi.org/10.1175/JAS-D-13-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., and Coauthors, 2016: Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open water and sea ice surfaces during melt and freeze-up seasons. J. Climate, 29, 87218744, https://doi.org/10.1175/JCLI-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 17471762, https://doi.org/10.1175/2010JCLI3817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. M. Blaisdell, and L. Iredell, 2014: Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: The Atmospheric Infrared Sounder science team version-6 retrieval algorithm. J. Appl. Remote Sens., 8, 084994, https://doi.org/10.1117/1.JRS.8.084994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tastula, E.-M., T. Vihma, E. L. Andreas, and B. Galperin, 2013: Validation of the diurnal cycles in atmospheric reanalyses over Antarctic sea ice. J. Geophys. Res. Atmos., 118, 41944204, https://doi.org/10.1002/jgrd.50336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 2005: The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Bound.-Layer Meteor., 117, 536, https://doi.org/10.1007/s10546-004-5641-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, https://doi.org/10.5194/acp-12-6863-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2015: Warm‐air advection, air mass transformation and fog causes rapid ice melt. Geophys. Res. Lett., 42, 55945602, https://doi.org/10.1002/2015GL064373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., T. Kilpeläinen, M. Manninen, A. Sjöblom, E. Jakobson, T. Palo, J. Jaagus, and M. Maturilli, 2011: Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring. Adv. Meteor., 2011, 486807, https://doi.org/10.1155/2011/486807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2016: The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosci., 121, 586620, https://doi.org/10.1002/2015JG003132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesslén, C., M. Tjernström, D. H. Bromwich, G. de Boer, A. M. L. Ekman, L.-S. Bai, and S.-H. Wang, 2014: The Arctic summer atmosphere: An evaluation of reanalyses using ASCOS data. Atmos. Chem. Phys., 14, 26052624, https://doi.org/10.5194/acp-14-2605-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large‐scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., K. Stamnes, and S. A. Bowling, 2001: Impact of the atmospheric thickness on the atmospheric downwelling longwave radiation and snowmelt under clear-sky conditions in the Arctic and Subarctic. J. Climate, 14, 920939, https://doi.org/10.1175/1520-0442(2001)014<0920:IOTATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1041 264 34
PDF Downloads 801 178 17