MJO Prediction Skill of the Subseasonal-to-Seasonal Prediction Models

Yuna Lim School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Yuna Lim in
Current site
Google Scholar
PubMed
Close
,
Seok-Woo Son School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
, and
Daehyun Kim Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Daehyun Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO), the dominant mode of tropical intraseasonal variability, provides a major source of tropical and extratropical predictability on a subseasonal time scale. This study conducts a quantitative evaluation of the MJO prediction skill in state-of-the-art operational models, participating in the subseasonal-to-seasonal (S2S) prediction project. The relationship of MJO prediction skill with model biases in the mean moisture fields and in the longwave cloud–radiation feedbacks is also investigated.

The S2S models exhibit MJO prediction skill out to a range of 12 to 36 days. The MJO prediction skills in the S2S models are affected by both the MJO amplitude and phase errors, with the latter becoming more important at longer forecast lead times. Consistent with previous studies, MJO events with stronger initial MJO amplitude are typically better predicted. It is found that the sensitivity to the initial MJO phase varies notably from model to model.

In most models, a notable dry bias develops within a few days of forecast lead time in the deep tropics, especially across the Maritime Continent. The dry bias weakens the horizontal moisture gradient over the Indian Ocean and western Pacific, likely dampening the organization and propagation of the MJO. Most S2S models also underestimate the longwave cloud–radiation feedbacks in the tropics, which may affect the maintenance of the MJO convective envelope. The models with smaller bias in the mean horizontal moisture gradient and the longwave cloud–radiation feedbacks show higher MJO prediction skills, suggesting that improving those biases would enhance MJO prediction skill of the operational models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seok-Woo Son, seokwooson@snu.ac.kr

Abstract

The Madden–Julian oscillation (MJO), the dominant mode of tropical intraseasonal variability, provides a major source of tropical and extratropical predictability on a subseasonal time scale. This study conducts a quantitative evaluation of the MJO prediction skill in state-of-the-art operational models, participating in the subseasonal-to-seasonal (S2S) prediction project. The relationship of MJO prediction skill with model biases in the mean moisture fields and in the longwave cloud–radiation feedbacks is also investigated.

The S2S models exhibit MJO prediction skill out to a range of 12 to 36 days. The MJO prediction skills in the S2S models are affected by both the MJO amplitude and phase errors, with the latter becoming more important at longer forecast lead times. Consistent with previous studies, MJO events with stronger initial MJO amplitude are typically better predicted. It is found that the sensitivity to the initial MJO phase varies notably from model to model.

In most models, a notable dry bias develops within a few days of forecast lead time in the deep tropics, especially across the Maritime Continent. The dry bias weakens the horizontal moisture gradient over the Indian Ocean and western Pacific, likely dampening the organization and propagation of the MJO. Most S2S models also underestimate the longwave cloud–radiation feedbacks in the tropics, which may affect the maintenance of the MJO convective envelope. The models with smaller bias in the mean horizontal moisture gradient and the longwave cloud–radiation feedbacks show higher MJO prediction skills, suggesting that improving those biases would enhance MJO prediction skill of the operational models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seok-Woo Son, seokwooson@snu.ac.kr
Save
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, 11951211, https://doi.org/10.1002/2017MS000963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden–Julian oscillation. Geophys. Res. Lett., 44, 25882596, https://doi.org/10.1002/2016GL072430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 91, 12471258, https://doi.org/10.1175/2010BAMS2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, https://doi.org/10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47, 22272250, https://doi.org/10.1175/1520-0469(1990)047<2227:ACSOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., S. Q. Zhang, A. M. da Silva, W. S. Olson, C. D. Kummerow, and J. Simpson, 2001: Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82, 659679, https://doi.org/10.1175/1520-0477(2001)082<0659:IGAASF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloud-resolving model. J. Atmos. Sci., 73, 22572278, https://doi.org/10.1175/JAS-D-14-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden–Julian oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104, https://doi.org/10.1029/2004JD005408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-S. Ahn, I.-S. Kang, and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, https://doi.org/10.1175/JCLI-D-14-00767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 77727784, https://doi.org/10.1002/2017JD027005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, https://doi.org/10.1175/JCLI-D-13-00480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., D. Kim, F. Vitart, V. E. Toma, J.-S. Kug, and P. J. Webster, 2016: MJO propagation across the Maritime Continent in the ECMWF ensemble prediction system. J. Climate, 29, 39733988, https://doi.org/10.1175/JCLI-D-15-0862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, https://doi.org/10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., and A. J. Matthews, 2009: Response of the West African monsoon to the Madden–Julian oscillation. J. Climate, 22, 40974116, https://doi.org/10.1175/2009JCLI2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, https://doi.org/10.1175/2008MWR2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 20502062, https://doi.org/10.1175/1520-0469(2004)061<2050:RBOTTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2017: MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center. Climate Dyn., 48, 32833307, https://doi.org/10.1007/s00382-016-3264-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894, https://doi.org/10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neena, J. M., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, https://doi.org/10.1175/JCLI-D-13-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649661, https://doi.org/10.1007/s00382-010-0754-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, https://doi.org/10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49ES53, https://doi.org/10.1175/BAMS-D-14-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Vitart, F., 2017: Madden–Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, https://doi.org/10.1002/qj.623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M.-P. Hung, S. J. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, https://doi.org/10.1007/s00382-013-1806-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., K. A. Hilburn, and D. K. Smith, 2012: Remote Sensing Systems DMSP SSM/I daily environmental suite on 0.25 deg grid, version 7. Remote Sensing Systems, accessed 1 February 2017, www.remss.com/missions/ssmi.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden–Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, X. Jiang, S.-J. Lin, T. Li, X. Fu, and G. Vecchi, 2015: The 3–4-week MJO prediction skill in a GFDL coupled model. J. Climate, 28, 53515364, https://doi.org/10.1175/JCLI-D-15-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242, https://doi.org/10.2151/jmsj1965.57.3_227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1956 501 63
PDF Downloads 1641 404 67