Antarctic Summer Sea Ice Trend in the Context of High-Latitude Atmospheric Circulation Changes

Lejiang Yu State Oceanic Administration Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China, and Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Michigan

Search for other papers by Lejiang Yu in
Current site
Google Scholar
PubMed
Close
,
Shiyuan Zhong Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
,
Mingyu Zhou State Oceanic Administration Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, and National Marine Environment Prediction Center, Beijing, China

Search for other papers by Mingyu Zhou in
Current site
Google Scholar
PubMed
Close
,
Bo Sun State Oceanic Administration Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China

Search for other papers by Bo Sun in
Current site
Google Scholar
PubMed
Close
, and
Donald H. Lenschow National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Donald H. Lenschow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The potential mechanisms underlying the observed increasing trend in Antarctic summertime sea ice cover for the 1979–2017 period have been investigated using a relatively novel method called the self-organizing map (SOM). Among the nine nodes generated to explain the variability of Antarctic sea ice cover, two (nodes 3 and 7) exhibit a statistically significant linear trend in the time series of the frequency of the SOM pattern occurrence that together explain 40% of the total trend in the sea ice cover. These two nodes have completely opposite spatial patterns and directions of trend and are associated with different atmospheric circulation patterns. Node 3, which represents an increase in sea ice over the Weddell Sea and the eastern Ross Sea and a decrease over the other coastal seas of West Antarctica, appears to be related to the positive phase of the southern annular mode (SAM) linked with the La Niña pattern of sea surface temperature (SST) over the tropical Pacific Ocean. The opposite spatial pattern and trend represented by node 7 is associated with a wave train originating over northern Australia. The anomalous wind field, surface downward longwave radiation, and surface air temperature generated by these circulation patterns are consistent with the spatial pattern and overall trends in the Antarctic sea ice cover.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0739.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lejiang Yu, yulejiang@sina.com.cn

Abstract

The potential mechanisms underlying the observed increasing trend in Antarctic summertime sea ice cover for the 1979–2017 period have been investigated using a relatively novel method called the self-organizing map (SOM). Among the nine nodes generated to explain the variability of Antarctic sea ice cover, two (nodes 3 and 7) exhibit a statistically significant linear trend in the time series of the frequency of the SOM pattern occurrence that together explain 40% of the total trend in the sea ice cover. These two nodes have completely opposite spatial patterns and directions of trend and are associated with different atmospheric circulation patterns. Node 3, which represents an increase in sea ice over the Weddell Sea and the eastern Ross Sea and a decrease over the other coastal seas of West Antarctica, appears to be related to the positive phase of the southern annular mode (SAM) linked with the La Niña pattern of sea surface temperature (SST) over the tropical Pacific Ocean. The opposite spatial pattern and trend represented by node 7 is associated with a wave train originating over northern Australia. The anomalous wind field, surface downward longwave radiation, and surface air temperature generated by these circulation patterns are consistent with the spatial pattern and overall trends in the Antarctic sea ice cover.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0739.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lejiang Yu, yulejiang@sina.com.cn

Supplementary Materials

    • Supplemental Materials (DOCX 1.99 MB)
Save
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19, 28962905, https://doi.org/10.1175/JCLI3774.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, https://doi.org/10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996 (updated yearly): Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/8GQ8LZQVL0VL.

    • Crossref
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally, 1999: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensory data sets. J. Geophys. Res., 104, 15 80315 814, https://doi.org/10.1029/1999JC900081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., S. N. Hameed, and K.-J. Ha, 2012: Nonlinear intraseasonal phases of the East Asian summer monsoon: Extraction and analysis using self-organizing maps. J. Climate, 25, 69756988, https://doi.org/10.1175/JCLI-D-11-00512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., G. R. Simpkins, and M. H. England, 2015: Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Climate, 28, 5665, https://doi.org/10.1175/JCLI-D-14-00438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2015: South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res., 120, 27732792, https://doi.org/10.1002/2014JD022940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and K. Steffen, 2001: Studies of Antarctic sea ice concentrations from satellite data and their applications. J. Geophys. Res., 106, 31 36131 385, https://doi.org/10.1029/2001JC000823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, https://doi.org/10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, https://doi.org/10.1007/s00382-010-0905-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallée, H., 1997: Air–sea interactions over Terra Nova during winter simulation with a coupled atmosphere–polynya model. J. Geophys. Res., 102, 13 83513 849, https://doi.org/10.1029/96JD03098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, https://doi.org/10.3354/cr022013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., R. Massom, S. Stammerjohn, P. Reid, G. Williams, and W. Meier, 2016: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change, 143, 228250, https://doi.org/10.1016/j.gloplacha.2016.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophys. Res. Lett., 41, 42304237, https://doi.org/10.1002/2014GL060172.

  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, https://doi.org/10.1175/JCLI-D-12-00649.1.

  • Johnson, N. C., S. B. Feldstein, and B. Tremblay, 2008: The continuum of Northern Hemisphere teleconnection patterns and a description of the NAO shift with the use of self-organizing maps. J. Climate, 21, 63546371, https://doi.org/10.1175/2008JCLI2380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. 3rd ed. Springer, 501 pp.

    • Crossref
    • Export Citation
  • Kohyama, T., and D. L. Hartmann, 2016: Antarctic sea ice response to weather and climate modes of variability. J. Climate, 29, 721741, https://doi.org/10.1175/JCLI-D-15-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science, 339, 563567, https://doi.org/10.1126/science.1225154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. C. Johnson, S. B. Feldstein, and D. Polland, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leloup, J., Z. Lachkar, J.-P. Boulanger, and S. Thiria, 2007: Detecting decadal changes in ENSO using neural networks. Climate Dyn., 28, 147162, https://doi.org/10.1007/s00382-006-0173-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, https://doi.org/10.1175/JCLI3617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, https://doi.org/10.1038/nature12945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015a: A Rossby wave bridge from the tropical Atlantic to west Antarctica. J. Climate, 28, 22562273, https://doi.org/10.1175/JCLI-D-14-00450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2015b: Rossby waves mediate impacts of tropical oceans on West Antarctic atmospheric circulation. J. Climate, 28, 81518164, https://doi.org/10.1175/JCLI-D-15-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., and J. Curry, 2010: Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc. Natl. Acad. Sci. USA, 107, 14 98714 992, https://doi.org/10.1073/pnas.1003336107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. Bitz, C. T. Y. Chung, and H. Teng, 2016: Antarctic sea ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, https://doi.org/10.1038/ngeo2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, https://doi.org/10.5194/tc-6-871-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauling, A. G., C. M. Bitz, J. J. Smith, and P. J. Langhorne, 2016: The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an Earth system model. J. Climate, 29, 16551672, https://doi.org/10.1175/JCLI-D-15-0501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G., W. Meier, D. Scott, and M. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, https://doi.org/10.5194/essd-5-311-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., and Coauthors, 2016: Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Climate, 29, 89318948, https://doi.org/10.1175/JCLI-D-16-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., and R. B. Alley, 2007: Antarctic sea ice: A self-organizing map-based perspective. Ann. Glaciol., 46, 391396, https://doi.org/10.3189/172756407782871549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2014: The Antarctic sea ice response to the ozone hole in climate models. J. Climate, 27, 13361342, https://doi.org/10.1175/JCLI-D-13-00590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., S. McGregor, A. S. Taschetto, L. M. Ciasto, and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, https://doi.org/10.1175/JCLI-D-13-00615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, https://doi.org/10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, https://doi.org/10.1002/grl.50820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, https://doi.org/10.1029/2009GL037524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Phillips, J. S. Hosking, G. J. Marshall, and A. Orr, 2013: The Amundsen Sea Low. Int. J. Climatol., 33, 18181829, https://doi.org/10.1002/joc.3558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., J. S. Hosking, G. J. Marshall, T. Phillips, and T. J. Bracegirdle, 2016: Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low. Climate Dyn., 46, 23912402, https://doi.org/10.1007/s00382-015-2708-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, J. A. Winkler, M. Zhou, D. H. Lenschow, B. Li, X. Wang, and Q. Yang, 2017: Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. Sci. Rep., 7, 45804, https://doi.org/10.1038/srep45804.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 74 4
PDF Downloads 262 52 5