Origins of Biases in CMIP5 Models Simulating Northwest Pacific Summertime Atmospheric Circulation Anomalies during the Decaying Phase of ENSO

Weichen Tao State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Weichen Tao in
Current site
Google Scholar
PubMed
Close
,
Gang Huang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Joint Center for Global Change Studies, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Gang Huang in
Current site
Google Scholar
PubMed
Close
,
Renguang Wu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
,
Kaiming Hu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Joint Center for Global Change Studies, Beijing, China
Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Kaiming Hu in
Current site
Google Scholar
PubMed
Close
,
Pengfei Wang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Pengfei Wang in
Current site
Google Scholar
PubMed
Close
, and
Hainan Gong Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Hainan Gong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study documents the biases of summertime northwest Pacific (NWP) atmospheric circulation anomalies during the decaying phase of ENSO and investigates their plausible reasons in 32 models from phase 5 of the Coupled Model Intercomparison Project. Based on an intermodel empirical orthogonal function (EOF) analysis of El Niño–Southern Oscillation (ENSO)-related 850-hPa wind anomalies, the dominant modes of biases are extracted. The first EOF mode, explaining 21.3% of total intermodel variance, is characterized by a cyclone over the NWP, indicating a weaker NWP anticyclone. The cyclone appears to be a Rossby wave response to unrealistic equatorial western Pacific (WP) sea surface temperature (SST) anomalies related to excessive equatorial Pacific cold tongue in the models. On one hand, the cold SST biases increase the mean zonal SST gradient, which further intensifies warm zonal advection, favoring the development and persistence of equatorial WP SST anomalies. On the other hand, they reduce the anomalous convection caused by ENSO-related warming, and the resultant increase in downward shortwave radiation contributes to the SST anomalies there. The second EOF mode, explaining 18.6% of total intermodel variance, features an anticyclone over the NWP with location shifted northward. The related SST anomalies in the Indo-Pacific sector show a tripole structure, with warming in the tropical Indian Ocean and equatorial central and eastern Pacific and cooling in the NWP. The Indo-Pacific SST anomalies are highly controlled by ENSO amplitude, which is determined by the intensity of subtropical cells via the adjustment of meridional and vertical advection in the models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0289.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gang Huang, hg@mail.iap.ac.cn

Abstract

The present study documents the biases of summertime northwest Pacific (NWP) atmospheric circulation anomalies during the decaying phase of ENSO and investigates their plausible reasons in 32 models from phase 5 of the Coupled Model Intercomparison Project. Based on an intermodel empirical orthogonal function (EOF) analysis of El Niño–Southern Oscillation (ENSO)-related 850-hPa wind anomalies, the dominant modes of biases are extracted. The first EOF mode, explaining 21.3% of total intermodel variance, is characterized by a cyclone over the NWP, indicating a weaker NWP anticyclone. The cyclone appears to be a Rossby wave response to unrealistic equatorial western Pacific (WP) sea surface temperature (SST) anomalies related to excessive equatorial Pacific cold tongue in the models. On one hand, the cold SST biases increase the mean zonal SST gradient, which further intensifies warm zonal advection, favoring the development and persistence of equatorial WP SST anomalies. On the other hand, they reduce the anomalous convection caused by ENSO-related warming, and the resultant increase in downward shortwave radiation contributes to the SST anomalies there. The second EOF mode, explaining 18.6% of total intermodel variance, features an anticyclone over the NWP with location shifted northward. The related SST anomalies in the Indo-Pacific sector show a tripole structure, with warming in the tropical Indian Ocean and equatorial central and eastern Pacific and cooling in the NWP. The Indo-Pacific SST anomalies are highly controlled by ENSO amplitude, which is determined by the intensity of subtropical cells via the adjustment of meridional and vertical advection in the models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0289.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gang Huang, hg@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.96 MB)
Save
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, https://doi.org/10.1175/2008BAMS2639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., B. S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res., 110, C09006, https://doi.org/10.1029/2004JC002817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, and Y. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 32503274, https://doi.org/10.1175/JCLI-D-14-00439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, Y. Yu, and S. K. Behera, 2017: A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dyn., 49, 37993811, https://doi.org/10.1007/s00382-017-3544-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Wei, J.-Y. Lee, K.-J. Ha, K.-S. Yun, and R. Lu, 2016: Intensification of the western North Pacific anticyclone response to the short decaying El Niño event due to greenhouse warming. J. Climate, 29, 36073627, https://doi.org/10.1175/JCLI-D-15-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Wen, H.-F. Graf, and R. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 4860, https://doi.org/10.1007/s00376-000-0042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Wen, J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, P. Zhao, and J. Cao, 2014: Influence of two types of El Niños on the East Asian climate during boreal summer: A numerical study. Climate Dyn., 43, 469481, https://doi.org/10.1007/s00382-013-1943-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, https://doi.org/10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, https://doi.org/10.1175/JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., L.-F. Huang, J.-Y. Tu, L. Tseng, and Y.-C. Hsueh, 2009: El Niño impacts on precipitation in the western North Pacific–East Asian sector. J. Climate, 22, 20392057, https://doi.org/10.1175/2008JCLI2649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, R. Kakatkar, C. Gnanaseelan, G. Srinivas, P. Singh, and M. K. Roxy, 2016: Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in South and East-Asian summer monsoon circulation and rainfall. Climate Dyn., 47, 831844, https://doi.org/10.1007/s00382-015-2874-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 27072727, https://doi.org/10.1007/s00382-016-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., S.-P. Xie, T. Miyama, K. J. Richards, and R. J. O. Small, 2007: What maintains the SST front north of the eastern Pacific equatorial cold tongue? J. Climate, 20, 25002514, https://doi.org/10.1175/JCLI4173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, D., G. Huang, W. Tao, R. Wu, K. Hu, and C. Li, 2018: Interannual variation of precipitation over the Hengduan Mountains during rainy season. Int. J. Climatol., 38, 21122125, https://doi.org/10.1002/joc.5321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichler, T., D. Rind, and S. Zebiak, 2006: Impact of global warming on ENSO variability using the coupled GISS GCM/ZC model. Int. J. Climatol., 26, 12831314, https://doi.org/10.1002/joc.1308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., and R. Lu, 2017: Improvements in simulating the relationship between ENSO and East Asian summer rainfall in the CMIP5 models. J. Climate, 30, 45134525, https://doi.org/10.1175/JCLI-D-16-0606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., R. Lu, H. Wang, and X. Yang, 2013: Impact of overestimated ENSO variability in the relationship between ENSO and East Asian summer rainfall. J. Geophys. Res. Atmos., 118, 62006211, https://doi.org/10.1002/jgrd.50482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, W. Chen, D. Nath, G. Huang, and W. Tao, 2015: Diverse influences of ENSO on the East Asian–western Pacific winter climate tied to different ENSO properties in CMIP5 models. J. Climate, 28, 21872202, https://doi.org/10.1175/JCLI-D-14-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, https://doi.org/10.1007/s00382-005-0084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Improvement of ENSO simulation based on intermodel diversity. J. Climate, 28, 9981015, https://doi.org/10.1175/JCLI-D-14-00376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., and T. Zhou, 2014: The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5–AMIP models. Climate Dyn., 43, 24552469, https://doi.org/10.1007/s00382-014-2068-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., and T. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Climate, 28, 365380, https://doi.org/10.1175/JCLI-D-13-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Sci. Rep., 5, 16771, https://doi.org/10.1038/srep16771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, M. Watanabe, and M. Kimoto, 2011: Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J. Climate, 24, 48594873, https://doi.org/10.1175/2011JCLI4156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, and R. Huang, 2011: The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Climate, 24, 53655377, https://doi.org/10.1175/2011JCLI4152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X. Qu, and R. Huang, 2012: The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer. Adv. Atmos. Sci., 29, 91100, https://doi.org/10.1007/s00376-011-0209-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, https://doi.org/10.1175/JCLI-D-13-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., S.-P. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., and R. Wu, 2015: Relationship between South China Sea precipitation variability and tropical Indo-Pacific SST anomalies in IPCC CMIP5 models during spring-to-summer transition. Adv. Atmos. Sci., 32, 13031318, https://doi.org/10.1007/s00376-015-4250-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña? Climate Dyn., 42, 10291042, https://doi.org/10.1007/s00382-013-1917-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., P. Wang, K. Hu, G. Huang, Z. Zhang, Y. Liu, and B. Yan, 2014: An introduction to the integrated climate model of the Center for Monsoon System Research and its simulated influence of El Niño on East Asian–western North Pacific climate. Adv. Atmos. Sci., 31, 11361146, https://doi.org/10.1007/s00376-014-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., J. Chen, L. Wang, and Z. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910942, https://doi.org/10.1007/s00376-012-2015-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, https://doi.org/10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, T., and H. Ueda, 2009: Evaluation for the seasonal evolution of the summer monsoon over the Asian and western North Pacific sector in the WCRP CMIP3 multi-model experiments. J. Meteor. Soc. Japan, 87, 539560, https://doi.org/10.2151/jmsj.87.539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, K. Hu, R. Wu, H. Gong, X. Chen, and W. Tao, 2017: Diverse relationship between ENSO and the northwest Pacific summer climate among CMIP5 models: Dependence on the ENSO decay pace. J. Climate, 30, 109127, https://doi.org/10.1175/JCLI-D-16-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, https://doi.org/10.1007/s00382-008-0397-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karori, M. A., J. Li, and F.-F. Jin, 2013: The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over southeast China. J. Climate, 26, 45674582, https://doi.org/10.1175/JCLI-D-12-00324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, https://doi.org/10.1029/2012GL052006.

  • Kim, S. T., W. Cai, F.-F. Jin, and J.-Y. Yu, 2014: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 33133321, https://doi.org/10.1007/s00382-013-1833-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26, 17431746, https://doi.org/10.1029/1999GL900352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2011: Dominant mode of climate variability, intermodel diversity, and projected future changes over the summertime western North Pacific simulated in the CMIP3 models. J. Climate, 24, 39353955, https://doi.org/10.1175/2011JCLI3907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., P. N. DiNezio, E.-S. Chung, S.-W. Yeh, A. T. Wittenberg, and C. Wang, 2014: Spring persistence, transition, and resurgence of El Niño. Geophys. Res. Lett., 41, 85788585, https://doi.org/10.1002/2014GL062484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7, 3646, https://doi.org/10.1007/BF02919166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Du, H. Xu, and B. Ren, 2015: An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate, 28, 76307640, https://doi.org/10.1175/JCLI-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., G. Huang, K. Hu, R. Wu, H. Gong, P. Wang, and G. Zhao, 2018: The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model. Climate Dyn., https://doi.org/10.1007/s00382-017-3976-3, in press.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, https://doi.org/10.1175/JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L., M. Alonso-Balmaseda, and F. Molteni, 2013: On the dependence of ENSO simulation on the coupled model mean state. Climate Dyn., 41, 15091525, https://doi.org/10.1007/s00382-012-1574-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, https://doi.org/10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Zhang, 2009: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett., 36, L13703, https://doi.org/10.1029/2009GL038774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and G. Branstator, 2006: Future changes of El Niño in two global coupled climate models. Climate Dyn., 26, 549566, https://doi.org/10.1007/s00382-005-0098-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, https://doi.org/10.1175/BAMS-88-9-1383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and G. J. Boer, 2005: Variability of upper Pacific Ocean overturning in a coupled climate model. J. Climate, 18, 666683, https://doi.org/10.1175/JCLI-3282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and Coauthors, 1992: Tropical air–sea interaction in general circulation models. Climate Dyn., 7, 73104, https://doi.org/10.1007/BF00209610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., 2017: The intermodel diversity of East Asia’s summer rainfall among CMIP5 models. J. Climate, 30, 92879301, https://doi.org/10.1175/JCLI-D-17-0094.1.