Combined Role of High- and Low-Frequency Processes of Equatorial Zonal Transport in Terminating an ENSO Event

Han-Ching Chen Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Han-Ching Chen in
Current site
Google Scholar
PubMed
Close
,
Chung-Hsiung Sui Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chung-Hsiung Sui in
Current site
Google Scholar
PubMed
Close
,
Yu-Heng Tseng Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Yu-Heng Tseng in
Current site
Google Scholar
PubMed
Close
, and
Bohua Huang Department of Atmospheric, Oceanic and Earth Sciences, College of Science, George Mason University, Fairfax, Virginia

Search for other papers by Bohua Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the sudden reversal of anomalous zonal equatorial transport above thermocline at the peak phase of ENSO. The oceanic processes associated with zonal transport are separated into low-frequency ENSO cycle and high-frequency oceanic wave processes. Both processes can generate a reversal of equatorial zonal current at the ENSO peak phase, which is a trigger for the rapid termination of ENSO events. For the low-frequency process, zonal transport exhibits slower and basinwide evolution. During the developing phase of El Niño (La Niña), eastward (westward) transport prevails in the central-eastern Pacific, which enhances ENSO. At the peak of ENSO, a basinwide reversal of the zonal transport resulting from the recharge–discharge process occurs and weakens the existing SST anomalies. High-frequency zonal transport presents clear eastward propagation related to Kelvin wave propagation at the equator, reflection at the eastern boundary, and the westward propagating Rossby waves. The major westerly wind bursts (easterly wind surges) occur in late boreal summer and fall with coincident downwelling (upwelling) Kelvin waves for El Niño (La Niña) events. After the peak of El Niño (La Niña), Kelvin waves reach the eastern boundary in boreal winter and reflect as off-equatorial Rossby waves; then, the zonal transport switches from eastward (westward) to westward (eastward). The high-frequency zonal transport can be represented by equatorial wave dynamics captured by the first three EOFs based on the high-pass-filtered equatorial thermocline. The transport anomaly during the decaying phase is dominated by the low-frequency process in El Niño. However, the transport anomaly is caused by both low- and high-frequency processes during La Niña.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chung-Hsiung Sui, sui@as.ntu.edu.tw

Abstract

This study investigates the sudden reversal of anomalous zonal equatorial transport above thermocline at the peak phase of ENSO. The oceanic processes associated with zonal transport are separated into low-frequency ENSO cycle and high-frequency oceanic wave processes. Both processes can generate a reversal of equatorial zonal current at the ENSO peak phase, which is a trigger for the rapid termination of ENSO events. For the low-frequency process, zonal transport exhibits slower and basinwide evolution. During the developing phase of El Niño (La Niña), eastward (westward) transport prevails in the central-eastern Pacific, which enhances ENSO. At the peak of ENSO, a basinwide reversal of the zonal transport resulting from the recharge–discharge process occurs and weakens the existing SST anomalies. High-frequency zonal transport presents clear eastward propagation related to Kelvin wave propagation at the equator, reflection at the eastern boundary, and the westward propagating Rossby waves. The major westerly wind bursts (easterly wind surges) occur in late boreal summer and fall with coincident downwelling (upwelling) Kelvin waves for El Niño (La Niña) events. After the peak of El Niño (La Niña), Kelvin waves reach the eastern boundary in boreal winter and reflect as off-equatorial Rossby waves; then, the zonal transport switches from eastward (westward) to westward (eastward). The high-frequency zonal transport can be represented by equatorial wave dynamics captured by the first three EOFs based on the high-pass-filtered equatorial thermocline. The transport anomaly during the decaying phase is dominated by the low-frequency process in El Niño. However, the transport anomaly is caused by both low- and high-frequency processes during La Niña.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chung-Hsiung Sui, sui@as.ntu.edu.tw
Save
  • An, S.-I., and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432, https://doi.org/10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45, 28892919, https://doi.org/10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the Global Ocean Data Assimilation System at NCEP: The Pacific Ocean. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3, https://ams.confex.com/ams/pdfpapers/70720.pdf.

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H.-C., Z.-Z. Hu, B. Huang, and C.-H. Sui, 2016: The role of reversed equatorial zonal transport in terminating an ENSO event. J. Climate, 29, 58595877, https://doi.org/10.1175/JCLI-D-16-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Climate, 28, 776792, https://doi.org/10.1175/JCLI-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcroix, T., B. Dewitte, Y. duPenhoat, F. Masia, and J. Picaut, 2000: Equatorial waves and warm pool displacements during the 1992–1998 El Niño Southern Oscillation events: Observation and modeling. J. Geophys. Res., 105, 26 04526 062, https://doi.org/10.1029/2000JC900113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. Elsevier Science, 654 pp.

  • Fedorov, A. V., 2010: Ocean response to wind variations, warm water volume, and simple models of ENSO in the low-frequency approximation. J. Climate, 23, 38553873, https://doi.org/10.1175/2010JCLI3044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and W. K. Melville, 2000: Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr., 30, 16921705, https://doi.org/10.1175/1520-0485(2000)030<1692:KFOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and E. Tziperman, 2009: Predictability of SST-modulated westerly wind bursts. J. Climate, 22, 38943909, https://doi.org/10.1175/2009JCLI2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and P. S. Schopf, 1984: Kelvin-wave-induced anomalous advection and the onset of surface warming in El Niño events. Mon. Wea. Rev., 112, 923933, https://doi.org/10.1175/1520-0493(1984)112<0923:KWIAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43, 606632, https://doi.org/10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 29892992, https://doi.org/10.1029/1999GL002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., 1981: Oscillations in a simple equatorial climate system. J. Atmos. Sci., 38, 248261, https://doi.org/10.1175/1520-0469(1981)038<0248:OIASEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., P. N. DiNezio, E.-S. Chung, S.-W. Yeh, A. T. Wittenberg, and C. Wang, 2014: Spring persistence, transition, and resurgence of El Niño. Geophys. Res. Lett., 41, 85788585, https://doi.org/10.1002/2014GL062484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J.-P. Boulanger, C. Menkes, G. Madec, P. Delecluse, E. Guilyardi, and J. Slingo, 2003: The March 1997 westerly event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response. J. Climate, 16, 33303343, https://doi.org/10.1175/1520-0442(2003)016<3330:TMWWEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., 1997: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 28722887, https://doi.org/10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, B., and P. Chang, 1990: Propagation of an equatorial Kelvin wave in a varying thermocline. J. Phys. Oceanogr., 20, 18261841, https://doi.org/10.1175/1520-0485(1990)020<1826:POAEKW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85, 677695, https://doi.org/10.1175/BAMS-85-5-677.

  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, https://doi.org/10.1029/1999GL004901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., and T. Hasegawa, 2014: Impact of sea surface temperature on westerlies over the western Pacific warm pool: Case study of an event in 2001/02. SOLA, 10, 59, https://doi.org/10.2151/sola.2014-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, C. L., A. M. Moore, J. Zavaly-Garay, and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO. J. Climate, 18, 50665085, https://doi.org/10.1175/JCLI3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295301, https://doi.org/10.1038/302295a0.

  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523, https://doi.org/10.1175/JCLI-D-12-00601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and G. N. Kiladis, 2006: Observed relationships between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19, 52535272, https://doi.org/10.1175/JCLI3893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45, 549566, https://doi.org/10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: Energetics over the western and central Pacific. Mon. Wea. Rev., 135, 33463361, https://doi.org/10.1175/MWR3503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, Y.-H., Z.-Z. Hu, R. Ding, and H.-C. Chen, 2017a: An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Climate Dyn., 48, 20252044, https://doi.org/10.1007/s00382-016-3188-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, Y.-H., R. Ding, and X.-M. Huang, 2017b: The warm blob in the northeast Pacific—The bridge leading to the 2015/16 El Niño. Environ. Res. Lett., 12, 054019, https://doi.org/10.1088/1748-9326/aa67c3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, https://doi.org/10.1029/2002JC001498.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 288 65 2
PDF Downloads 111 35 1