Atlantic Multidecadal Variability as a Modulator of Precipitation Variability in the Southwest United States

Dong Eun Lee Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Dong Eun Lee in
Current site
Google Scholar
PubMed
Close
,
Mingfang Ting Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Mingfang Ting in
Current site
Google Scholar
PubMed
Close
,
Nicolas Vigaud International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Nicolas Vigaud in
Current site
Google Scholar
PubMed
Close
,
Yochanan Kushnir Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Yochanan Kushnir in
Current site
Google Scholar
PubMed
Close
, and
Anthony G. Barnston International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Anthony G. Barnston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two independent atmospheric general circulation models reveal that the positive (negative) phase of Atlantic multidecadal variability (AMV) can reduce (amplify) the variance of the shorter time-scale (e.g., ENSO related) precipitation fluctuations in the United States, especially in the Southwest, as well as decrease (increase) the long-term seasonal mean precipitation for the cold season. The variance is modulated because of changes in 1) dry day frequency and 2) maximum daily rainfall intensity. With positive AMV forcing, the upper-level warming originating from the increased precipitation over the tropical Atlantic Ocean changes the mean vertical thermal structure over the United States continent to a profile less favorable for rain-inducing upward motions. In addition, a northerly low-level dry advection associated with the local overturning leaves less available column moisture for condensation and precipitation. The opposite conditions occur during cold AMV periods.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Eun Lee, dlee@ldeo.columbia.edu

Abstract

Two independent atmospheric general circulation models reveal that the positive (negative) phase of Atlantic multidecadal variability (AMV) can reduce (amplify) the variance of the shorter time-scale (e.g., ENSO related) precipitation fluctuations in the United States, especially in the Southwest, as well as decrease (increase) the long-term seasonal mean precipitation for the cold season. The variance is modulated because of changes in 1) dry day frequency and 2) maximum daily rainfall intensity. With positive AMV forcing, the upper-level warming originating from the increased precipitation over the tropical Atlantic Ocean changes the mean vertical thermal structure over the United States continent to a profile less favorable for rain-inducing upward motions. In addition, a northerly low-level dry advection associated with the local overturning leaves less available column moisture for condensation and precipitation. The opposite conditions occur during cold AMV periods.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Eun Lee, dlee@ldeo.columbia.edu
Save
  • Allen, M. R., and L. A. Smith, 1997: Optimal filtering in singular spectrum analysis. Phys. Lett., 234, 419428, https://doi.org/10.1016/S0375-9601(97)00559-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trinble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., M. Ting, Z. Wen, and D. E. Lee, 2017: Distinct patterns of tropical Pacific SST anomaly and their impacts on North American climate. J. Climate, 30, 52215241, https://doi.org/10.1175/JCLI-D-16-0488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic Sea ice. J. Climate, 25, 14131430, https://doi.org/10.1175/JCLI-D-11-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howitt, R. E., J. Medellin-Azuara, D. MacEqan, J. Lund, and D. Sumner, 2014: Economic analysis of the 2014 drought for California agriculture. Center for Watershed Sciences, University of California, 20 pp., https://watershed.ucdavis.edu/files/biblio/DroughtReport_23July2014_0.pdf.

  • Hu, Q., and S. Feng, 2012: AMO- and ENSO-driven summertime circulation and precipitation variations in North America. J. Climate, 25, 64776495, https://doi.org/10.1175/JCLI-D-11-00520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., S. Feng, and R. J. Oglesby, 2011: Variations in North American summer precipitation driven by the Atlantic multidecadal oscillation. J. Climate, 24, 55555570, https://doi.org/10.1175/2011JCLI4060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSSTv4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, R. Seager, N. Henderson, and D. E. Lee, 2018: Role of equatorial Pacific SST forecast error in the late winter California precipitation forecast for the 2015/16 El Niño. J. Climate, 31, 839852, https://doi.org/10.1175/JCLI-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I. S., H.-H. No, and F. Kucharski, 2014: ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J. Climate, 27, 79117920, https://doi.org/10.1175/JCLI-D-14-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105618, https://doi.org/10.1175/2010JCLI3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S. P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K., J.-K. Schemm, and S.-H. Yoo, 2009: Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J. Climate, 22, 59625982, https://doi.org/10.1175/2009JCLI2966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notaro, M., Z. Liu, R. G. Gallimore, J. W. Williams, D. S. Gutzler, and S. Collins, 2010: Complex seasonal cycle of ecohydrology in the Southwest United States. J. Geophys. Res., 115, G04034, https://doi.org/10.1029/2010JG001382.

    • Search Google Scholar
    • Export Citation
  • Oleson K.W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR/TN-503+STR, 434 pp., www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_Tech_Note.pdf.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer-Verlag, 520 pp.

  • Pomposi, C., A. Giannini, Y. Kushnir, and D. E. Lee, 2016: Understanding Pacific Ocean influence on interannual precipitation variability in the Sahel. Geophys. Res. Lett., 43, 92349242, https://doi.org/10.1002/2016GL069980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and et al, 2003: The atmospheric general circulation model ECHAM5, Part I. Max Planck Institut für Meteorologie, Rep. 349, 140 pp., https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.

  • Rogers, J. C., and J. S. M. Coleman, 2003: Interactions between the Atlantic Multidecadal Oscillation, El Niño/La Niña, and the PNA in winter Mississippi Valley stream flow. Geophys. Res. Lett., 30, 1518, https://doi.org/10.1029/2003GL017216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2016: Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Climate, 29, 39894019, https://doi.org/10.1175/JCLI-D-15-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, J., L. Dümenil, and J. Polcher, 2001: On the land surface–atmosphere coupling and its impact in a single-column atmospheric model. J. Appl. Meteor., 40, 642663, https://doi.org/10.1175/1520-0450(2001)040<0642:OTLSAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Naik, 2012: A mechanisms-based approach for detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236261, https://doi.org/10.1175/JCLI-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sewall, J. O., and L. C. Sloan, 2004: Disappearing Arctic sea ice reduces available water in the American west. Geophys. Res. Lett., 31, L06209, https://doi.org/10.1029/2003GL019133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, P. R., A. C. Comrie, G. D. Packin, K. Angersbach, and M. K. Hughes, 2002: The climate of the US Southwest. Climate Res., 21, 219238, https://doi.org/10.3354/cr021219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordonates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and L. Cuihua, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, https://doi.org/10.1029/2011GL048712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, and C. Li, 2014: North Atlantic Multidecadal SST Oscillation: External forcing versus internal variability. J. Mar. Syst., 133, 2738, https://doi.org/10.1016/j.jmarsys.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 363 122 6
PDF Downloads 252 86 9