Polarized Response of East Asian Winter Temperature Extremes in the Era of Arctic Warming

Shuangmei Ma State Key Laboratory of Severe Weather, and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Shuangmei Ma in
Current site
Google Scholar
PubMed
Close
,
Congwen Zhu State Key Laboratory of Severe Weather, and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Congwen Zhu in
Current site
Google Scholar
PubMed
Close
,
Boqi Liu State Key Laboratory of Severe Weather, and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Boqi Liu in
Current site
Google Scholar
PubMed
Close
,
Tianjun Zhou LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
,
Yihui Ding National Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Yihui Ding in
Current site
Google Scholar
PubMed
Close
, and
Yvan J. Orsolini Norwegian Institute for Air Research (NILU), Kjeller, Norway

Search for other papers by Yvan J. Orsolini in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

It has been argued that fewer cold extremes will be expected to occur over most midlatitude areas, because of anthropogenic-induced global warming. However, East Asia repeatedly suffered from unexpected cold spells during the winter of 2015/16, and the low surface air temperature (SAT) during 21–25 January 2016 broke the previous calendar record from 1961. We hypothesize that cold extremes such as these occur because of Arctic amplification (AA) of global warming. To test this hypothesis, we analyzed the changes of SAT variability in the winter season over East Asia. Our results show that the SAT variability (measured by the standard deviation of the winter season daily mean SAT) over East Asia has significantly increased in the era of AA during 1988/89–2015/16 and exhibits a polarization between warm and cold extremes, popularly dubbed as “weather whiplash.” This phenomenon is driven by both the thermodynamic effects of global warming and the dynamic effects of AA. Global warming favors a rising SAT and more frequent warm extremes. The AA phenomenon strengthens the wavy components of midlatitude circulation, leading to more frequent blockings over the Ural region and a stronger Siberian high in north Asia. This dynamic effect of AA enhances the intrusion of cold air from Siberia into East Asia and causes cold extremes. Because there is a comparable increase of frequency of both warm and cold extremes, the SAT variability significantly increases in unison with AA, but little change is observed in the seasonal mean SAT of East Asia. This implies increased risks of both cold and warm extremes over East Asia exist even during global warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Congwen Zhu, zhucw@cma.gov.cn

Abstract

It has been argued that fewer cold extremes will be expected to occur over most midlatitude areas, because of anthropogenic-induced global warming. However, East Asia repeatedly suffered from unexpected cold spells during the winter of 2015/16, and the low surface air temperature (SAT) during 21–25 January 2016 broke the previous calendar record from 1961. We hypothesize that cold extremes such as these occur because of Arctic amplification (AA) of global warming. To test this hypothesis, we analyzed the changes of SAT variability in the winter season over East Asia. Our results show that the SAT variability (measured by the standard deviation of the winter season daily mean SAT) over East Asia has significantly increased in the era of AA during 1988/89–2015/16 and exhibits a polarization between warm and cold extremes, popularly dubbed as “weather whiplash.” This phenomenon is driven by both the thermodynamic effects of global warming and the dynamic effects of AA. Global warming favors a rising SAT and more frequent warm extremes. The AA phenomenon strengthens the wavy components of midlatitude circulation, leading to more frequent blockings over the Ural region and a stronger Siberian high in north Asia. This dynamic effect of AA enhances the intrusion of cold air from Siberia into East Asia and causes cold extremes. Because there is a comparable increase of frequency of both warm and cold extremes, the SAT variability significantly increases in unison with AA, but little change is observed in the seasonal mean SAT of East Asia. This implies increased risks of both cold and warm extremes over East Asia exist even during global warming.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Congwen Zhu, zhucw@cma.gov.cn
Save
  • Åström, D. O., B. Forsberg, K. L. Ebi, and J. Rocklöv, 2013: Attributing mortality from extreme temperatures to climate change in Stockholm, Sweden. Nat. Climate Change, 3, 10501054, https://doi.org/10.1038/nclimate2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, https://doi.org/10.1002/2013GL058745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, H. N., W. Zhou, H. Y. Mok, and M. C. Wu, 2012: Relationship between Ural–Siberian blocking and the East Asian winter monsoon in relation to the Arctic Oscillation and the El Niño–Southern Oscillation. J. Climate, 25, 42424257, https://doi.org/10.1175/JCLI-D-11-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christidis, N., G. S. Jones, and P. A. Stott, 2015: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Climate Change, 5, 4650, https://doi.org/10.1038/nclimate2468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CMA, 2016: Global major weather and climate event in January 2016 (in Chinese). China Meteorological News Press, http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201602/t20160210_303989.html.

  • CMA, 2017: China Climate Bulletin for 2016 (in Chinese). China Meteorological Administration, 35 pp., http://www.cma.gov.cn/root7/auto13139/.

  • Cohen, J., 2016: An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophys. Res. Lett., 43, 52875294, https://doi.org/10.1002/2016GL069102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Capua, G., and D. Coumou, 2016: Changes in meandering of the Northern Hemisphere circulation. Environ. Res. Lett., 11, 094028, https://doi.org/10.1088/1748-9326/11/9/094028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28, 693713, https://doi.org/10.1007/s13351-014-4046-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and Z. Xiao, 2015: Does the climate warming hiatus exist over the Tibetan Plateau?. Sci. Rep., 5, 13711, https://doi.org/10.1038/srep13711.

  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, https://doi.org/10.1175/JCLI-D-11-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Summary for policymakers. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 3–21.

  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, https://doi.org/10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z. Ren, 2005: Progress in quality control of surface meteorological data. Mater. Sci. Technol., 33, 199203.

  • Luo, D., Y. Yao, A. Dai, I. Simmonds, and L. Zhong, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation. J. Climate, 30, 35693587, https://doi.org/10.1175/JCLI-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence to frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., K. Nishii, L. Wang, Y. J. Orsolini, and K. Takaya, 2016: Cold-air outbreaks over East Asia associated with blocking highs: Mechanisms and their interaction with the polar stratosphere. Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events, J. Li et al., Eds., Cambridge University Press, 225–235.

    • Crossref
    • Export Citation
  • Orsolini, Y. J., R. Senan, R. E. Benestad, and A. Melsom, 2012: Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dyn., 38, 24372448, https://doi.org/10.1007/s00382-011-1169-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. Benestad, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 19691982, https://doi.org/10.1007/s00382-013-1782-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Climate Change, 6, 992999, https://doi.org/10.1038/nclimate3121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, https://doi.org/10.1175/2010JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753770, https://doi.org/10.1007/s00382-013-1817-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, A., K. A. McKinnon, M. P. Tingley, and P. Huybers, 2017: Seasonally resolved distributional trends of North American temperatures show contraction of winter variability. J. Climate, 30, 11391157, https://doi.org/10.1175/JCLI-D-16-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2017: The missing northern European winter cooling response to Arctic sea ice loss. Nat. Commun., 8, 14603, https://doi.org/10.1038/ncomms14603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2016: Effects of a warming Arctic. Science, 353, 989990, https://doi.org/10.1126/science.aag2349.

  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, https://doi.org/10.1002/2016GL069024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, https://doi.org/10.1175/JAS3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G. J., R. Haarsma, H. De Vries, and M. R. Allen, 2015: Cold extremes in North America vs. mild weather in Europe: The winter of 2013–14 in the context of a warming world. Bull. Amer. Meteor. Soc., 96, 707714, https://doi.org/10.1175/BAMS-D-14-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729730, https://doi.org/10.1126/science.343.6172.729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, J. C. L. Chan, D. Barriopedro, and R. Huang, 2010: Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int. J. Climatol., 30, 153158, https://doi.org/10.1002/joc.1876.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., W. Huang, B. Wang, R. Chen, J. S. Wright, and W. Ma, 2018: Possible mechanisms for four regimes associated with cold events over East Asia. Climate Dyn., https://doi.org/10.1007/s00382-017-3905-5, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., D. Luo, A. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 35493568, https://doi.org/10.1175/JCLI-D-16-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., and Coauthors, 2016: The strong El Niño in 2015/16 and its dominant impacts on global and China’s climate. J. Meteor. Res., 30, 283297, https://doi.org/10.1007/s13351-016-6101-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., C. Lu, and Z. Guan, 2012: Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ. Res. Lett., 7, 044044, https://doi.org/10.1088/1748-9326/7/4/044044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2014 665 124
PDF Downloads 1324 263 16