Multidecadal Fluctuation of the Wintertime Arctic Oscillation Pattern and Its Implication

Hainan Gong Center for Monsoon System Research, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Joint Center for Global Change Studies, and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Hainan Gong in
Current site
Google Scholar
PubMed
Close
,
Lin Wang Center for Monsoon System Research, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Joint Center for Global Change Studies, and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Lin Wang in
Current site
Google Scholar
PubMed
Close
,
Wen Chen Center for Monsoon System Research, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Joint Center for Global Change Studies, and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
, and
Debashis Nath Center for Monsoon System Research, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Joint Center for Global Change Studies, and College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Debashis Nath in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The multidecadal fluctuations in the patterns and teleconnections of the winter mean Arctic Oscillation (AO) are investigated based on observational and reanalysis datasets. Results show that the Atlantic center of the AO pattern remains unchanged throughout the period 1920–2010, whereas the Pacific center of the AO is strong during 1920–59 and 1986–2010 and weak during 1960–85. Consequently, the link between the AO and the surface air temperature over western North America is strong during 1920–59 and 1986–2010 and weak during 1960–85. The time-varying Pacific center of the AO motivates a revisit to the nature of the AO from the perspective of decadal change. It reveals that the North Pacific mode (NPM) and North Atlantic Oscillation (NAO) are the inherent regional atmospheric modes over the North Pacific and North Atlantic, respectively. Their patterns over the North Pacific and North Atlantic remain stable and change little with time during 1920–2010. The Atlantic center of the AO always resembles the NAO over the North Atlantic, but the Pacific center of the AO only resembles the NPM over the North Pacific when the NPM–NAO coupling is strong. These results suggest that the AO seems to be fundamentally rooted in the variability over the North Atlantic and that the annular structure of the AO very likely arises from the coupling of the atmospheric modes between the North Pacific and North Atlantic.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lin Wang, wanglin@mail.iap.ac.cn

Abstract

The multidecadal fluctuations in the patterns and teleconnections of the winter mean Arctic Oscillation (AO) are investigated based on observational and reanalysis datasets. Results show that the Atlantic center of the AO pattern remains unchanged throughout the period 1920–2010, whereas the Pacific center of the AO is strong during 1920–59 and 1986–2010 and weak during 1960–85. Consequently, the link between the AO and the surface air temperature over western North America is strong during 1920–59 and 1986–2010 and weak during 1960–85. The time-varying Pacific center of the AO motivates a revisit to the nature of the AO from the perspective of decadal change. It reveals that the North Pacific mode (NPM) and North Atlantic Oscillation (NAO) are the inherent regional atmospheric modes over the North Pacific and North Atlantic, respectively. Their patterns over the North Pacific and North Atlantic remain stable and change little with time during 1920–2010. The Atlantic center of the AO always resembles the NAO over the North Atlantic, but the Pacific center of the AO only resembles the NPM over the North Pacific when the NPM–NAO coupling is strong. These results suggest that the AO seems to be fundamentally rooted in the variability over the North Atlantic and that the annular structure of the AO very likely arises from the coupling of the atmospheric modes between the North Pacific and North Atlantic.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Lin Wang, wanglin@mail.iap.ac.cn
Save
  • Allan, R. J., and T. J. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and H. F. Graf, 2003: North Pacific–North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., and L. Kang, 2006: Linkage between the Arctic Oscillation and winter climate over East Asia on the interannual timescale: Roles of quasistationary planetary waves. Chin. J. Atmos. Sci., 30, 863870.

    • Search Google Scholar
    • Export Citation
  • Chen, W., X. Lan, L. Wang, and Y. Ma, 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chin. Sci. Bull., 58, 13551362, https://doi.org/10.1007/s11434-012-5654-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2002: On the physical nature of the Arctic Oscillation. Geophys. Res. Lett., 29, 1805, https://doi.org/10.1029/2002GL015208.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dai, P., and B. Tan, 2017: The nature of the Arctic Oscillation and diversity of the extreme surface weather anomalies it generates. J. Climate, 30, 55635584, https://doi.org/10.1175/JCLI-D-16-0467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.” Geophys. Res. Lett., 27, 779782, https://doi.org/10.1029/1999GL010945.

  • Feldstein, S. B., and C. Franzke, 2006: Are the North Atlantic Oscillation and the Northern Annular Mode distinguishable? J. Atmos. Sci., 63, 29152930, https://doi.org/10.1175/JAS3798.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., H. F. Seidel, G. P. Compo, and P. D. Sardeshmukh, 2016: An ensemble of ocean reanalyses for 1815-2013 with sparse observational input. J. Geophys. Res. Oceans, 121, 68916910, https://doi.org/10.1002/2016JC012079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076, https://doi.org/10.1029/2000GL012311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, W. Chen, X. Chen, and D. Nath, 2017: Biases of the wintertime Arctic Oscillation in CMIP5 models. Environ. Res. Lett., 12, 014001, https://doi.org/10.1088/1748-9326/12/1/014001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime Northern Hemisphere. J. Climate, 14, 45124529, https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North-Atlantic Oscillation-regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, Eds., 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/GM134.

    • Crossref
    • Export Citation
  • Itoh, H., 2008: Reconsideration of the true versus apparent Arctic Oscillation. J. Climate, 21, 20472062, https://doi.org/10.1175/2007JCLI2167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, https://doi.org/10.1175/2009JCLI3099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P., D. Lister, T. Osborn, C. Harpham, M. Salmon, and C. Morice, 2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and updata to 2010. J. Geophys. Res., 117, D05127, https://doi.org/10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17, 37283744, https://doi.org/10.1175/1520-0442(2004)017<3728:ASLFFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J., and M. McHugh, 2002: On the separability of the North Atlantic Oscillation and Arctic Oscillation. Climate Dyn., 19, 599608, https://doi.org/10.1007/s00382-002-0247-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, N., and H. Nakamura, 2014: Multi-decadal modulations in the Aleutian-Icelandic low seesaw and the axial symmetry of the Arctic Oscillation signature, as revealed in the 20th century reanalysis. Tellus, 66A, 22660, https://doi.org/10.3402/tellusa.v66.22660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., and J. M. Wallace, 2015: On the leading patterns of Northern Hemisphere sea level pressure variability. J. Atmos. Sci., 72, 34693486, https://doi.org/10.1175/JAS-D-14-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and B. Tan, 2013: Mechanism of the wintertime Aleutian low-Icelandic low seesaw. Geophys. Res. Lett., 40, 41034108, https://doi.org/10.1002/grl.50770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, B., L. Suo, and J. Huang, 2008: Variability of the coupling between surface air temperature and northern annular mode at various levels. Acta Meteor. Sin., 22, 277283.

    • Search Google Scholar
    • Export Citation
  • Tan, B., J. Yuan, Y. Dai, S. B. Feldstein, and S. Lee, 2015: The linkage between the eastern Pacific teleconnection pattern and convective heating over the tropical western Pacific. J. Climate, 28, 57835794, https://doi.org/10.1175/JCLI-D-14-00568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, https://doi.org/10.1126/science.1058958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/Annular Mode: Two paradigms–one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805, https://doi.org/10.1256/smsqj.56401.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15, 19871991, https://doi.org/10.1175/1520-0442(2002)015<1987:TPCOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, J. Chan, D. Barriopedro, and R. Huang, 2010: Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int. J. Climatol., 30, 153158, https://doi.org/10.1002/joc.1876.

    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., Y. Orsolini, E. Dutra, O. Bulygina, A. Sterin, and S. Brönnimann, 2017: Eurasian snow depth in long-term climate reanalyses. Cryosphere, 11, 923935, https://doi.org/10.5194/tc-11-923-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., B. Tan, S. B. Feldstein, and S. Lee, 2015: Wintertime North Pacific teleconnection patterns: Seasonal and interannual variability. J. Climate, 28, 82478263, https://doi.org/10.1175/JCLI-D-14-00749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. W. K. Moore, 2009: Temporal variability in the expression of the Arctic Oscillation in the North Pacific. J. Climate, 22, 31103126, https://doi.org/10.1175/2008JCLI2611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 702 218 16
PDF Downloads 718 232 20