Contrasting Impacts of Radiative Forcing in the Southern Ocean versus Southern Tropics on ITCZ Position and Energy Transport in One GFDL Climate Model

Baoqiang Xiang NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Baoqiang Xiang in
Current site
Google Scholar
PubMed
Close
,
Ming Zhao NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ming Zhao in
Current site
Google Scholar
PubMed
Close
,
Yi Ming NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Yi Ming in
Current site
Google Scholar
PubMed
Close
,
Weidong Yu Center for Ocean and Climate Research, First Institute of Oceanography, State Oceanic Administration, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Weidong Yu in
Current site
Google Scholar
PubMed
Close
, and
Sarah M. Kang School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea

Search for other papers by Sarah M. Kang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baoqiang Xiang, Baoqiang.xiang@noaa.gov

Abstract

Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baoqiang Xiang, Baoqiang.xiang@noaa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, S., and N. Fofonoff, 1996: Oceanic heat flux calculation. J. Atmos. Oceanic Technol., 13, 13271329, https://doi.org/10.1175/1520-0426(1996)013<1327:OHFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Climate, 23, 11271145, https://doi.org/10.1175/2009JCLI3002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and T. Schneider, 2016: Narrowing of the ITCZ in a warming climate: Physical mechanisms. Geophys. Res. Lett., 43, 11 35011 357, https://doi.org/10.1002/2016GL070396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, I. M. Held, and P. Phillipps, 2018: The role of the water vapor feedback in the ITCZ response to hemispherically asymmetric forcings. J. Climate, 31, 36593678, https://doi.org/10.1175/JCLI-D-17-0723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, https://doi.org/10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, https://doi.org/10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and G. K. Vallis, 2013: Meridional energy transport in the coupled atmosphere–ocean system: Compensation and partitioning. J. Climate, 26, 71517166, https://doi.org/10.1175/JCLI-D-12-00133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frey, W. R., E. A. Maroon, A. G. Pendergrass, and J. E. Kay, 2017: Do Southern Ocean cloud feedbacks matter for 21st century warming? Geophys. Res. Lett., 44, 12 44712 456, https://doi.org/10.1002/2017GL076339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., S.-P. Xie, R. Farneti, E. A. Maroon, and D. M. W. Frierson, 2013: Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J. Climate, 26, 46124629, https://doi.org/10.1175/JCLI-D-12-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 43954411, https://doi.org/10.1175/JCLI-D-16-0818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2016: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 22792295, https://doi.org/10.1007/s00382-016-3205-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2016: The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2-ES coupled climate model. Geophys. Res. Lett., 43, 395403, https://doi.org/10.1002/2015GL066903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zone and the large-scale tropical circulation on a water-covered Earth. J. Atmos. Sci., 50, 691713, https://doi.org/10.1175/1520-0469(1993)050<0691:MOTICZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, M. Watanabe, and M. Kimoto, 2011: Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J. Climate, 24, 48594873, https://doi.org/10.1175/2011JCLI4156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, https://doi.org/10.1073/pnas.1213302110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, https://doi.org/10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and I. M. Held, 2012: Tropical precipitation, SSTs and the surface energy budget: A zonally symmetric perspective. Climate Dyn., 38, 19171924, https://doi.org/10.1007/s00382-011-1048-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and S.-P. Xie, 2014: Dependence of climate response on meridional structure of external thermal forcing. J. Climate, 27, 55935600, https://doi.org/10.1175/JCLI-D-13-00622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-017-0004-6.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., and R. Saravannan, 1999: The response of atmospheric heat transport to zonally averaged SST trends. Tellus, 51A, 815832, https://doi.org/10.3402/tellusa.v51i5.14495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, D., A. Donohoe, J. Marshall, and D. Ferreira, 2014: Changes in ITCZ location and cross-equatorial heat transport at the last glacial maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett., 390, 6979, https://doi.org/10.1016/j.epsl.2013.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2016: Can reducing the incoming energy flux over the Southern Ocean in a CGCM improve its simulation of tropical climate? Geophys. Res. Lett., 43, 11 05711 063, https://doi.org/10.1002/2016GL071150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740753, https://doi.org/10.1175/JCLI-D-11-00716.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möbis, B., and B. Stevens, 2012: Factors controlling the position of the intertropical convergence zone on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04, https://doi.org/10.1029/2012MS000199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740, https://doi.org/10.1017/CBO9781107415324.018.

    • Crossref
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1971: The observed annual cycle in the meridional transport of atmospheric energy. J. Atmos. Sci., 28, 325339, https://doi.org/10.1175/1520-0469(1971)028<0325:TOACIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, M. E., Z. Kuang, and C. C. Walker, 2008: Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Climate, 21, 52295241, https://doi.org/10.1175/2008JCLI2073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev.: Climate Change, 6, 345358, https://doi.org/10.1002/wcc.338.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2017: Feedback of atmosphere-ocean coupling on shifts of the intertropical convergence zone. Geophys. Res. Lett., 44, 11 64411 653, https://doi.org/10.1002/2017GL075817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and D. M. W. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate, 27, 30353042, https://doi.org/10.1175/JCLI-D-13-00691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, J., S. M. Kang, and T. Merlis, 2017: A model intercomparison of the tropical precipitation response to a CO2 doubling in aquaplanet simulations. Geophys. Res. Lett., 44, 9931000, https://doi.org/10.1002/2016GL072347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and G. J. Zhang, 2017: Impact of tropical SSTs in the North Atlantic and southeastern Pacific on the eastern Pacific ITCZ. J. Climate, 30, 12911305, https://doi.org/10.1175/JCLI-D-16-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 10531054, https://doi.org/10.1126/science.1237554.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Climate, 27, 10291045, https://doi.org/10.1175/JCLI-D-13-00205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. Louis Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., W. Yu, T. Li, and B. Wang, 2011: The critical role of the boreal summer mean state in the development of the IOD. Geophys. Res. Lett., 38, L02710, https://doi.org/10.1029/2010GL045851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, W. Yu, and S. Xu, 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 23492354, https://doi.org/10.1002/grl.50431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, I. M. Held, and J.-C. Golaz, 2017: Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations. Geophys. Res. Lett., 44, 15201527, https://doi.org/10.1002/2016GL071992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, https://doi.org/10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33, L06709, https://doi.org/10.1029/2005GL025229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristic with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1677 666 35
PDF Downloads 632 194 14