The Indian Summer Monsoon Intraseasonal Oscillations in CFSv2 Forecasts: Biases and Importance of Improving Air–Sea Interaction Processes

Yuanlong Li Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado, and Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
,
Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Wanqiu Wang Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
,
Lei Zhang Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Lei Zhang in
Current site
Google Scholar
PubMed
Close
, and
M. Ravichandran National Center for Antarctic and Ocean Research, Vasco de Gama, India

Search for other papers by M. Ravichandran in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Northward-propagating Indian summer monsoon intraseasonal oscillations (MISOs) are a major origin of the active–break spells of the monsoon rainfall. Forecast results for 28 active and 27 break spells from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), during 1999–2010 are analyzed. CFSv2 forecasts are able to represent the propagation of MISOs from the equator to central India, showing improvements in many aspects compared to its previous version. Systematic biases for MISOs, however, still exist, exhibiting apparently weaker amplitude and slower northward propagation compared to observations. The eastern Arabian Sea (EAS)–western Bay of Bengal (WBB) region (EAS–WBB region; 12°–20°N, 65°–85°E) is found to be critical for the MISO prediction. In that region, the forecast and observed MISO trajectories begin to bifurcate from each other, and forecast errors grow rapidly. Further diagnosis reveals that local air–sea interaction in that region is severely underrepresented in CFSv2. Sea surface temperature (SST) response to surface heat flux forcing and convection response to SST forcing are both too weak, leading to the underestimated MISO amplitude. The relationship between precipitation and SST in CFSv2 is much more chaotic than in observation. The misrepresentation of air–sea coupling results in longer MISO periods in the EAS–WBB region, manifesting as slower propagation and delayed arrival of MISOs in central India. Refining the air–sea coupling processes is crucial for improving the CFSv2 forecast. This includes taking into account the ocean skin layer, better resolving the diurnal cycle, and improving the ocean model physics.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0623.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, yuanlong.li@colorado.edu

Abstract

Northward-propagating Indian summer monsoon intraseasonal oscillations (MISOs) are a major origin of the active–break spells of the monsoon rainfall. Forecast results for 28 active and 27 break spells from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), during 1999–2010 are analyzed. CFSv2 forecasts are able to represent the propagation of MISOs from the equator to central India, showing improvements in many aspects compared to its previous version. Systematic biases for MISOs, however, still exist, exhibiting apparently weaker amplitude and slower northward propagation compared to observations. The eastern Arabian Sea (EAS)–western Bay of Bengal (WBB) region (EAS–WBB region; 12°–20°N, 65°–85°E) is found to be critical for the MISO prediction. In that region, the forecast and observed MISO trajectories begin to bifurcate from each other, and forecast errors grow rapidly. Further diagnosis reveals that local air–sea interaction in that region is severely underrepresented in CFSv2. Sea surface temperature (SST) response to surface heat flux forcing and convection response to SST forcing are both too weak, leading to the underestimated MISO amplitude. The relationship between precipitation and SST in CFSv2 is much more chaotic than in observation. The misrepresentation of air–sea coupling results in longer MISO periods in the EAS–WBB region, manifesting as slower propagation and delayed arrival of MISOs in central India. Refining the air–sea coupling processes is crucial for improving the CFSv2 forecast. This includes taking into account the ocean skin layer, better resolving the diurnal cycle, and improving the ocean model physics.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0623.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, yuanlong.li@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.17 MB)
Save
  • Abhik, S., P. Mukhopadhyay, R. P. M. Krishna, K. D. Salunke, A. R. Dhakate, and S. A. Rao, 2016: Diagnosis of boreal summer intraseasonal oscillation in high resolution NCEP climate forecast system. Climate Dyn., 46, 32873303, https://doi.org/10.1007/s00382-015-2769-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abhik, S., R. P. M. Krishna, M. Mahakur, M. Ganai, P. Mukhopadhyay, and J. Dudhia, 2017: Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1. J. Adv. Model. Earth Syst., 9, 10021029, https://doi.org/10.1002/2016MS000819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abhilash, S., and Coauthors, 2014: Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2. Climate Dyn., 42, 28012815, https://doi.org/10.1007/s00382-013-2045-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., Y. N. Takayabu, T. Ushiyama, and K. Yoneyama, 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433, https://doi.org/10.1175/2010MWR3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernie, D. J., E. Guilyardi, G. Madec, J. M. Slingo, and S. J. Woolnough, 2007: Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: A diurnally forced OGCM. Climate Dyn., 29, 575590, https://doi.org/10.1007/s00382-007-0249-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and Coauthors, 2015: Improvements in the representation of the Indian summer monsoon in the NCEP climate forecast system version 2. Climate Dyn., 45, 24852498, https://doi.org/10.1007/s00382-015-2484-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 11711194, https://doi.org/10.1256/qj.03.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, B., and W. Han, 2009: Indian Ocean intraseasonal sea surface temperature variability during boreal summer: Madden–Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res., 114, C05002, https://doi.org/10.1029/2008JC004958.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 20, 30563082, https://doi.org/10.1175/JCLI4144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17, 12631271, https://doi.org/10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and T. Li, 2002: Impacts of air–sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 Model. Mon. Wea. Rev., 130, 28892904, https://doi.org/10.1175/1520-0493(2002)130<2889:IOASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, https://doi.org/10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157174, https://doi.org/10.1175/JAS3830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Yang, Q. Bao, and B. Wang, 2008: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577597, https://doi.org/10.1175/2007MWR2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, J.-Y. Lee, W. Wang, and L. Gao, 2011: Sensitivity of dynamical intraseasonal prediction skills to different initial conditions. Mon. Wea. Rev., 139, 25722592, https://doi.org/10.1175/2011MWR3584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and K. Rupa Kumar, 2006: The Asian monsoon—Agriculture and economy. The Asian Monsoon, B. Wang, Ed., Springer, 651–683.

    • Crossref
    • Export Citation
  • Ge, X., W. Wang, A. Kumar, and Y. Zhang, 2017: Importance of the vertical resolution in simulating SST diurnal and intraseasonal variability in an oceanic general circulation model. J. Climate, 30, 39633978, https://doi.org/10.1175/JCLI-D-16-0689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., M. Deshpande, P. Mukhopadhyay, S. K. Saha, S. A. Rao, R. Murthugudde, and B. N. Goswami, 2014: Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Climate Dyn., 43, 27252745, https://doi.org/10.1007/s00382-014-2089-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., R. P. M. Krishna, P. Mukhopadhyay, M. Khairoutdinov, and B. N. Goswami, 2015: Simulation of the Indian summer monsoon in the superparameterized Climate Forecast System version 2: Preliminary results. J. Climate, 28, 89889012, https://doi.org/10.1175/JCLI-D-14-00607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, https://doi.org/10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 281 pp., http://data1.gfdl.noaa.gov/~arl/pubrel/j/mom4beta/src/mom4/doc/guide.pdf.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, X. Liu, Z. Zuo, and B. Jha, 2013: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP climate forecast system version 2. J. Climate, 26, 37083727, https://doi.org/10.1175/JCLI-D-12-00437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., and T. P. Sabin, 2008: An ocean–atmosphere interaction mechanism for the active break cycle of the Asian summer monsoon. Climate Dyn., 30, 553566, https://doi.org/10.1007/s00382-007-0305-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1997: Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon. Wea. Rev., 125, 19972013, https://doi.org/10.1175/1520-0493(1997)125<1997:HSASOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, J. A. Curry, and V. E. Toma, 2012: Asian summer monsoon prediction in ECMWF system 4 and NCEP CFSv2 retrospective seasonal forecasts. Climate Dyn., 39, 29752991, https://doi.org/10.1007/s00382-012-1470-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, R.-C. Lien, J. N. Moum, and J.-W. Wang, 2013: Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden–Julian oscillations. J. Geophys. Res. Oceans, 118, 49454964, https://doi.org/10.1002/jgrc.20395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, M. Ravichandran, and J.-W. Wang, 2014: Revisiting the wintertime intraseasonal SST variability in the tropical South Indian Ocean: Impact of the ocean interannual variation. J. Phys. Oceanogr., 44, 18861907, https://doi.org/10.1175/JPO-D-13-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and T. Lee, 2015: Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden–Julian oscillations. J. Geophys. Res. Oceans, 120, 22332258, https://doi.org/10.1002/2014JC010647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, and M. Ravichandran, 2016: Intraseasonal variability of SST and precipitation in the Arabian Sea during Indian summer monsoon: Impact of the ocean mixed layer depth. J. Climate, 29, 78897910, https://doi.org/10.1175/JCLI-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, M. Ravichandran, W. Wang, T. Shinoda, and T. Lee, 2017a: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 1. Intraseasonal variability and causes. J. Geophys. Res. Oceans, 122, 42914311, https://doi.org/10.1002/2017JC012691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, M. Ravichandran, T. Lee, and T. Shinoda, 2017b: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J. Geophys. Res. Oceans, 122, 43124328, https://doi.org/10.1002/2017JC012692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., K. M. Weickman, G. N. Kiladis, B. E. Mapes, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M.-I. Lee, 2008: Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J. Climate, 21, 45414567, https://doi.org/10.1175/2008JCLI1816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mujumdar, M., K. Salunke, S. A. Rao, M. Ravichandran, and B. N. Goswami, 2011: Diurnal cycle induced amplification of sea surface temperature intraseasonal oscillations over the Bay of Bengal in summer monsoon season. IEEE Geosci. Remote Sens. Lett., 8, 206210, https://doi.org/10.1109/LGRS.2010.2060183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narapusetty, B., R. Murtugudde, H. Wang, and A. Kumar, 2016: Ocean–atmosphere processes driving Indian summer monsoon biases in CFSv2 hindcasts. Climate Dyn., 47, 14171433, https://doi.org/10.1007/s00382-015-2910-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rai, S., and V. Krishnamurthy, 2011: Error growth in Climate Forecast System daily retrospective forecasts of South Asian monsoon. J. Geophys. Res., 116, D03108, https://doi.org/10.1029/2010JD014840.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, https://doi.org/10.1007/s12040-010-0019-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramu, D. A., and Coauthors, 2016: Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J. Geophys. Res. Atmos., 121, 22052221, https://doi.org/10.1002/2015JD024629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., 2014: Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region—And its quantification. Climate Dyn., 43, 11591169, https://doi.org/10.1007/s00382-013-1881-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349358, https://doi.org/10.2151/jmsj.85.349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., and Y. Tanimoto, 2012: Influence of sea surface temperature on the intraseasonal variability of the South China Sea summer monsoon. Climate Dyn., 39, 12091218, https://doi.org/10.1007/s00382-011-1118-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, https://doi.org/10.1007/s00382-012-1547-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabeerali, C. T., A. Ramu Dandi, A. Dhakate, K. Salunke, S. Mahapatra, and S. A. Rao, 2013: Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J. Geophys. Res. Atmos., 118, 44014420, https://doi.org/10.1002/jgrd.50403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S. K., and Coauthors, 2014: Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int. J. Climatol., 34, 16281641, https://doi.org/10.1002/joc.3791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahai, A. K., S. Abhilash, R. Chattopadhyay, N. Borah, S. Joseph, S. Sharmila, and M. Rajeevan, 2015: High-resolution operational monsoon forecasts: An objective assessment. Climate Dyn., 44, 31293140, https://doi.org/10.1007/s00382-014-2210-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130, https://doi.org/10.1029/2001GL013587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-K. E. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System: The effect of sea surface temperature. Mon. Wea. Rev., 135, 18071827, https://doi.org/10.1175/MWR3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharmila, S., and Coauthors, 2013: Role of ocean–atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Climate Dyn., 41, 16511669, https://doi.org/10.1007/s00382-013-1854-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shenoi, S. S. C., N. Nasnodkar, G. Rajesh, K. Jossia Joseph, I. Suresh, and A. M. Almeida, 2009: On the diurnal ranges of sea surface temperature (SST) in the north Indian Ocean. J. Earth Syst. Sci., 118, 483496, https://doi.org/10.1007/s12040-009-0038-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636, https://doi.org/10.1175/JCLI3432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11, 16851702, https://doi.org/10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 14851493, https://doi.org/10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., A. Jayakumar, C. Gnanaseelan, M. Lengaigne, D. Sengupta, and B. Goswami, 2012: Processes of 30–90 days sea surface temperature variability in the northern Indian Ocean during boreal summer. Climate Dyn., 38, 19011916, https://doi.org/10.1007/s00382-011-1015-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., Z. Zhang, K. M. Lau, and J.-H. Kim, 2001: Interannual sea surface temperature variability and the predictability of tropical intraseasonal variability. J. Atmos. Sci., 58, 25962615, https://doi.org/10.1175/1520-0469(2001)058<2596:ISSTVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2004: Indo-Pacific Ocean response to atmospheric intraseasonal variability: 2. Boreal summer and the intraseasonal oscillation. J. Geophys. Res., 109, C03030, https://doi.org/10.1029/2003JC002002.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., W. Wang, X. Fu, and K.-H. Seo, 2012: Tropical intraseasonal rainfall variability in the CFSR. Climate Dyn., 38, 21912207, https://doi.org/10.1007/s00382-011-1087-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2009: Impacts of ocean surface on the northward propagation of the boreal summer intraseasonal oscillation in the NCEP Climate Forecast System. J. Climate, 22, 65616576, https://doi.org/10.1175/2009JCLI3007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Xie, S.-H. Yoo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 16011620, https://doi.org/10.1007/s00382-010-0935-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M.-P. Hung, S. J. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, https://doi.org/10.1007/s00382-013-1806-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9, 17121730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83, 16031630, https://doi.org/10.1175/BAMS-83-11-1603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, https://doi.org/10.1126/science.288.5467.847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 20862104, https://doi.org/10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 25112539, https://doi.org/10.1007/s00382-010-0954-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229, https://doi.org/10.2151/jmsj1965.58.3_225.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1003 182 11
PDF Downloads 921 152 6