Assessing the Impact of Volcanic Eruptions on Climate Extremes Using CMIP5 Models

Seungmok Paik Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea

Search for other papers by Seungmok Paik in
Current site
Google Scholar
PubMed
Close
and
Seung-Ki Min Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea

Search for other papers by Seung-Ki Min in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes extreme temperature and precipitation responses over the global land to five explosive tropical volcanic eruptions that occurred since the 1880s, using CMIP5 multimodel simulations. Changes in annual extreme indices during posteruption years are examined using a composite analysis. First, a robust global decrease in extreme temperature is found, which is stronger than the internal variability ranges (estimated from random bootstrap sampling). Intermodel correlation analysis shows a close relationship between annual extreme and mean temperature responses to volcanic forcing, indicating a similar mechanism at work. The cooling responses exhibit strong intermodel correlation with a decrease in surface humidity, consistent with the Clausius–Clapeyron relation. Second, extreme and mean precipitation reductions are observed during posteruption years, especially in Northern and Southern Hemisphere summer monsoon regions, with good intermodel agreement. The precipitation decreases are also larger than the internal variability ranges and are dominated by the monsoon regions. Moisture budget analysis further reveals that most of the precipitation decrease over the monsoon regions is explained by evaporation decrease, as well as dynamic and thermodynamic contributions. Interestingly, the dynamic effect is found to have a large influence on intermodel spread in precipitation responses, with high intermodel correlation with mean and extreme precipitation changes. These model-based results are largely supported by an observational analysis based on the Hadley Centre Global Climate Extremes Index 2 (HadEX2) dataset for the recent three volcanic eruptions. Our results demonstrate that temperature and precipitation extremes significantly respond to volcanic eruptions, largely resembling mean climate responses, which have important implications for geoengineering based on solar radiation management.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0651.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Ki Min, skmin@postech.ac.kr

Abstract

This study analyzes extreme temperature and precipitation responses over the global land to five explosive tropical volcanic eruptions that occurred since the 1880s, using CMIP5 multimodel simulations. Changes in annual extreme indices during posteruption years are examined using a composite analysis. First, a robust global decrease in extreme temperature is found, which is stronger than the internal variability ranges (estimated from random bootstrap sampling). Intermodel correlation analysis shows a close relationship between annual extreme and mean temperature responses to volcanic forcing, indicating a similar mechanism at work. The cooling responses exhibit strong intermodel correlation with a decrease in surface humidity, consistent with the Clausius–Clapeyron relation. Second, extreme and mean precipitation reductions are observed during posteruption years, especially in Northern and Southern Hemisphere summer monsoon regions, with good intermodel agreement. The precipitation decreases are also larger than the internal variability ranges and are dominated by the monsoon regions. Moisture budget analysis further reveals that most of the precipitation decrease over the monsoon regions is explained by evaporation decrease, as well as dynamic and thermodynamic contributions. Interestingly, the dynamic effect is found to have a large influence on intermodel spread in precipitation responses, with high intermodel correlation with mean and extreme precipitation changes. These model-based results are largely supported by an observational analysis based on the Hadley Centre Global Climate Extremes Index 2 (HadEX2) dataset for the recent three volcanic eruptions. Our results demonstrate that temperature and precipitation extremes significantly respond to volcanic eruptions, largely resembling mean climate responses, which have important implications for geoengineering based on solar radiation management.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0651.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seung-Ki Min, skmin@postech.ac.kr

Supplementary Materials

    • Supplemental Materials (DOCX 990.56 KB)
Save
  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño–like response to volcanic forcing. Nature, 426, 274278, https://doi.org/10.1038/nature02101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224232, https://doi.org/10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres, R. J., and A. D. Kasgnoc, 1998: A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res., 103, 25 25125 261, https://doi.org/10.1029/98JD02091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., S. Solomon, and L. M. Polvani, 2016: Robust wind and precipitation responses to the Mount Pinatubo eruption, as simulated in the CMIP5 models. J. Climate, 29, 47634778, https://doi.org/10.1175/JCLI-D-15-0658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, J. E., and D. J. Hofmann, 1997: Lidar measurements of stratospheric aerosol over Mauna Loa Observatory. Geophys. Res. Lett., 24, 19231926, https://doi.org/10.1029/97GL01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bittner, M., H. Schmidt, C. Timmreck, and F. Sienz, 2016: Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys. Res. Lett., 43, 93249332, https://doi.org/10.1002/2016GL070587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluth, G. J. S., W. I. Rose, I. E. Sprod, and A. J. Krueger, 1997: Stratospheric loading of sulfur from explosive volcanic eruptions. J. Geol., 105, 671683, https://doi.org/10.1086/515972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., E. Xoplaki, C. Casty, A. Pauling, and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197, https://doi.org/10.1007/s00382-006-0175-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, https://doi.org/10.1029/2005JD006280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., G. Zielinski, B. Vinther, R. Udisti, K. Kreutz, J. Cole-Dai, and E. Castellano, 2008: Volcanism and the Little Ice Age. PAGES News, Vol. 16, PAGES International Project Office, Bern, Switzerland, 22–23.

    • Crossref
    • Export Citation
  • Curry, C. L., and Coauthors, 2014: A multimodel examination of climate extremes in an idealized geoengineering experiment. J. Geophys. Res. Atmos., 119, 39003923, https://doi.org/10.1002/2013JD020648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 20982118, https://doi.org/10.1002/jgrd.50150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driscoll, S., A. Bozzo, L. J. Gray, A. Robock, and G. Stenchikov, 2012: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res., 117, D17105, https://doi.org/10.1029/2012JD017607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041710, https://doi.org/10.1002/2013GL059158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., J. Luterbacher, E. Zorita, S. F. B. Tett, C. Casty, and H. Wanner, 2007: European climate response to tropical volcanic eruptions over the last half millennium. Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006GL027992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Freychet, N., H.-H. Hsu, C. Chou, and C.-H. Wu, 2015: Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics. J. Climate, 28, 14771493, https://doi.org/10.1175/JCLI-D-14-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. F. Wehner, 2004: Detection of volcanic influence on global precipitation. Geophys. Res. Lett., 31, L12217, https://doi.org/10.1029/2004GL020044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., and K. Caldeira, 2000: Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett., 27, 21412144, https://doi.org/10.1029/1999GL006086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and S. Solomon, 2009: Risks of climate engineering. Science, 325, 955956, https://doi.org/10.1126/science.1178530.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and B. Wang, 2011: Trends in global monsoon area and precipitation over the past 30 years. Geophys. Res. Lett., 38, L08701, https://doi.org/10.1029/2011GL046893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos., 118, 12471260, https://doi.org/10.1002/jgrd.50145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iles, C. E., and G. C. Hegerl, 2014: The global precipitation response to volcanic eruptions in the CMIP5 models. Environ. Res. Lett., 9, 104012, https://doi.org/10.1088/1748-9326/9/10/104012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iles, C. E., G. C. Hegerl, A. P. Schurer, and X. Zhang, 2013: The effect of volcanic eruptions on global precipitation. J. Geophys. Res. Atmos., 118, 87708786, https://doi.org/10.1002/jgrd.50678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Joseph, R., and N. Zeng, 2011: Seasonally modulated tropical drought induced by volcanic aerosol. J. Climate, 24, 20452060, https://doi.org/10.1175/2009JCLI3170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun., 8, 778, https://doi.org/10.1038/s41467-017-00755-6.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, X. Zhang, F. Zwiers, L. V. Alexander, M. G. Donat, and Y.-S. Tung, 2016: Attribution of extreme temperature changes during 1951–2010. Climate Dyn., 46, 17691782, https://doi.org/10.1007/s00382-015-2674-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kravitz, B., and Coauthors, 2013: Climate model responses from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 83208332, https://doi.org/10.1002/jgrd.50646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and N.-C. Lau, 2012: Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies. J. Climate, 25, 320342, https://doi.org/10.1175/JCLI-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, H.-G., S.-W. Yeh, J.-S. Kug, Y.-G. Park, J.-H. Park, R. Park, and C.-K. Song, 2016: Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: Results from the ERIK simulation. Climate Dyn., 46, 37253736, https://doi.org/10.1007/s00382-015-2799-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep., 6, 24331, https://doi.org/10.1038/srep24331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., S. McGregor, M. H. England, and A. Sen Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 60246033, https://doi.org/10.1002/2015GL064751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paik, S., and S.-K. Min, 2017: Climate responses to volcanic eruptions assessed from observations and CMIP5 multi-models. Climate Dyn., 48, 10171030, https://doi.org/10.1007/s00382-016-3125-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and J. Mao, 1992: Winter warming from large volcanic eruptions. Geophys. Res. Lett., 19, 24052408, https://doi.org/10.1029/92GL02627.

  • Robock, A., and J. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 10861103, https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Naik, 2012: A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236261, https://doi.org/10.1175/JCLI-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 29072921, https://doi.org/10.1175/JCLI-D-15-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stothers, R. B., 1996: Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period, 1881–1960. J. Geophys. Res., 101, 39013920, https://doi.org/10.1029/95JD03237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stothers, R. B., 2001: Major optical depth perturbations to the stratosphere from volcanic eruptions: Stellar extinction period, 1961–1978. J. Geophys. Res., 106, 29933003, https://doi.org/10.1029/2000JD900652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilmes, S., and Coauthors, 2013: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 11 03611 058, https://doi.org/10.1002/jgrd.50868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, https://doi.org/10.1029/2007GL030524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegmann, M., S. Brönnimann, J. Bhend, J. Franke, D. Folini, M. Wild, and J. Luterbacher, 2014: Volcanic influence on European summer precipitation through monsoons: Possible causes for “years without summer.” J. Climate, 27, 36833691, https://doi.org/10.1175/JCLI-D-13-00524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295, 841844, https://doi.org/10.1126/science.1065837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed surface humidity changes to human influence. Nature, 449, 710712, https://doi.org/10.1038/nature06207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zambri, B., and A. Robock, 2016: Winter warming and summer monsoon reduction after volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5) simulations. Geophys. Res. Lett., 43, 10 92010 928, https://doi.org/10.1002/2016GL070460.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1355 329 11
PDF Downloads 1171 169 11